

August 27, 2015

Reference No. 038443-70

Original Sent via Email

Ms. Jenny Davison Remedial Project Manager United States Environmental Protection Agency Region V 77 West Jackson Boulevard Mail Code SR-6J Chicago, Illinois 60604

Dear Ms. Davison:

Re: Groundwater Sampling Results
South Dayton Dump and Landfill
Moraine. Ohio

This letter provides a summary of the results of groundwater sampling conducted at the South Dayton Dump and Landfill (SDDL) Site and vicinity in May and June 2015. GHD has prepared this letter on behalf of the Respondents to the Administrative Settlement Agreement and Order on Consent (ASAOC) for Remedial Investigation/Feasibility Study (RI/FS) of the Site, Docket No. V-W-06-C-852 (Respondents). The Respondents include Hobart Corporation (Hobart), Kelsey Hayes Company (Kelsey-Hayes), and NCR Corporation (NCR). These three Respondents are and have been performing the Work required by the ASAOC under the direction and oversight of the United States Environmental Protection Agency (USEPA).

The sampling event involved collection of groundwater samples from select monitoring wells where previous results indicated presence of volatile organic compounds (VOCs) at concentrations greater than specific criteria values¹ in order to characterize current conditions, as described in an e-mail to USEPA (Leslie Patterson) dated May 4, 2015. This included monitoring wells at the SDDL Site and at the adjacent Dayton Power and Light (DPL) site. Following USEPA approval, groundwater samples were collected from a total of 25 monitoring wells and analyzed for VOCs as outlined below.

- GHD initiated field activities on May 8, 2015. Groundwater levels were measured at all accessible monitoring wells and provided in Table 1. Well locations are shown on Figures 1 and 2.
- Groundwater samples were collected from 20 monitoring wells from May 11 to 15, 2015. Due to
 access considerations, sampling of 5 monitoring wells at the DPL site was postponed and
 subsequently completed from June 23 to 24, 2015.

The criteria values applied for this purpose are USEPA Regional Screening Levels (RSLs) for tap water: Maximum Contaminant Levels (MCLs), from RSL tables last updated June 2015.

- Three monitoring wells that were originally proposed for sampling could not be sampled due to difficulties with access or well construction, including:
 - GW-6, located at the south end of DPL, is damaged (bent well casing) preventing pump placement
 - MW-223B, located in the central part of DPL, was not found and appears to be covered with asphalt paving
 - MW-228, located on Valley Asphalt property, is damaged due to the presence of concrete rubble around the well casing
- Low-flow well purging was conducted at a rate of 150 to 200 millilitres per minute (mL/min) using a
 bladder pump with dedicated Teflon tubing, and with the pump intake at the middle of the screen
 interval. Field parameters were recorded to determine stabilization before sampling. The field
 parameters include dissolved oxygen (DO), oxidation-reduction potential (ORP), pH, temperature,
 conductivity and turbidity. Well purging records are provided in Attachment 1.
- GHD submitted groundwater samples (32 total including 2 field duplicate sets, 3 trip blanks, and 2 equipment blanks) to Test America Laboratories in North Canton, Ohio for VOC analysis using USEPA SW-846 Method 8260B. Laboratory reports are available on request.
- Sampling and analysis activities were conducted consistent with the project-specific Field
 Sampling Plan and Quality Assurance Project Plan.
- Purge water was containerized for management as investigation-derived waste (IDW) and is temporarily stored at the SDDL Site pending characterization and off-site disposal.

GHD's data validation determined that the analytical results are acceptable for use with qualifications as noted in the memoranda provided in Attachment 2. The validated analytical results are shown in Table 2 attached with corresponding USEPA RSL MCLs for comparison. The detected VOCs and the corresponding maximum detected concentration are summarized in the following table.

VOC parameter	MCL (μg/L)	SDDL wells maximum detected value (µg/L)	DPL wells maximum detected value (µg/L)
1,1-Dichloroethane		1.2 J	ND
1,4-Dichlorobenzene	75	0.37 J	ND
2-Butanone (Methyl ethyl ketone) (MEK)		ND	9.9 J
Acetone		ND	53
Benzene	5	390	250
Chlorobenzene	100	1.7	ND
cis-1,2-Dichloroethene	70	480	290
Cyclohexane		0.58 J	200
Ethylbenzene	700	0.48 J	600
Isopropyl benzene		0.71 J	38

VOC parameter	MCL (μg/L)	SDDL wells maximum detected value (µg/L)	DPL wells maximum detected value (µg/L)
Methyl cyclohexane		1.8	87
Tetrachloroethene	5	0.45 J	ND
Toluene	1000	0.25 J	64
Trichloroethene	5	85	ND
Vinyl chloride	2	350	110
Xylenes (total)	10000	ND	1100

Notes:

-- - MCL not established

ND - not detected

J - estimated concentration

As shown above, the VOCs detected in at least one sample at concentrations greater than the MCL (where established) are: benzene; cis-1,2-dichloroethene; trichloroethene; and vinyl chloride.

The results from this sampling event will be incorporated into the project database for inclusion in future submittals and RI/FS work plan development.

Should you have any questions on the above, please do not hesitate to contact us.

Sincerely,

GHD

Julian Hayward

Julian Hazaanl

JH/ks/1

Encl.

cc: Leslie Patterson, USEPA

Ken Brown Bryan Heath Wendell Barner Jim Campbell Valerie Chan

Groundwater Elevation Data
South Dayton Dump and Landfill Site

Moraine, Ohio

Table 1

	Ground Surface	Top of Casing	5/8/2	2015
Location	Elevation	Elevation	Depth	Elevation
Shallow				
MW-101A	722.2	725.00	14.79	710.21
MW-102	714.5	717.63	7.66	709.97
MW-103	714.8	716.50	6.43	710.07
MW-104	728.7	728.30	NM	
MW-201	713.2	715.25	5.27	709.98
MW-202	730.9	733.08	22.23	710.85
MW-203	728.3	730.11	19.38	710.73
MW-204	720.7	722.69	12.07	710.62
MW-206	714.2	716.08	5.56	710.52
MW-207	714.6	716.33	5.58	710.75
MW-208	731.9	733.82	22.88	710.94
MW-209	712.5	714.26	4.19	710.07
MW-210	730.6	732.50	21.63	710.87
MW-215A	731.7	734.63	23.65	710.98
MW-217	737.0	736.65	NM	
MW-218A	720.2	722.70	13.07	709.63
MW-219	735.6	735.34	24.4	710.94
MW-222A	735.7	735.42	24.46	710.96
MW-223A	735.7	735.38	24.28	711.10
MW-224A	736.0	735.60	24.66	710.94
MW-225	731.5	731.14	20.1	711.04
MW-226	721.4	721.09	10.36	710.73
MW-227	736.2	739.10	28.13	710.97
MW-228	735.9	738.57	NM	
MW-229	737.3	736.68	25.93	710.75
MW-1	735.8	735.13	NM	
MW-3	736.0	735.87	24.13	711.74
MW-4	735.7	735.37	24.46	710.91
MW-5	736.0	735.55	24.02	711.53
GW-2	735.8	735.36	NM	
GW-3	736.0	735.58	NM	
GW-5	734.7	734.51	23.52	710.99
GW-6	734.7	734.42	NM	
GW-7	735.6	735.07	24.07	711.00
GW-8	735.4	734.92	23.55	711.37
MW-A	735.4	735.12	NM	
MW-B	735.7	735.43	NM	
Staff Gauge 1 Small Pond	710.0	709.32	NM	
Staff Gauge 2 Large Pond	709.7	708.21	2.46	710.67
Staff Gauge 3 Quarry Lake	709.4	706.07	4.84	710.91

Table 1

Groundwater Elevation Data South Dayton Dump and Landfill Site Moraine, Ohio

	Ground Surface	Top of Casing	5/8/2015			
Location	Elevation	Elevation	Depth	Elevation		
Deep						
MW-209A	712.3	714.64	4.59	710.05		
MW-210A	730.5	733.54	23.19	710.35		
MW-210B	730.3	733.65	23.25	710.40		
MW-212	726.3	728.83	19.5	709.33		
MW-214	723.8	723.96	14.16	709.80		
MW-215B	731.7	734.69	24.01	710.68		
MW-216	732.4	732.08	21.39	710.69		
MW-218B	720.1	722.97	13.48	709.49		
MW-220	735.8	735.40	NM			
MW-221	736.2	735.84	25.21	710.63		
MW-222	736.5	736.26	25.47	710.79		
MW-223B	735.5	735.04	NM			
MW-224B	736.0	735.48	24.59	710.89		

Notes:

Survey datum: SPC OH South, NAVD 88, US Survey Ft.

Depth to Groundwater is measured in feet below top of casing
Staff guage water level is added to reference Zero Mark Elevation value
NM- not measured

Table 2

Summary Of Analytical Results Groundwater Sampling - May/June 2015 South Dayton Dump And Landfill Site Moraine, Ohio

Sample Location: Sample ID: Sample Date:			GW-5 GW-38443-062415-JC-029 6/24/2015	GW-5 GW-38443-062415-JC-030 6/24/2015	MW-101A GW-38443-051315-GL-012 5/13/2015	MW-102 GW-38443-051115-GL-002 5/11/2015	MW-102 GW-38443-051115-GL-003 5/11/2015	MW-103 GW-38443-051115-GL-004 5/11/2015	MW-201 GW-38443-051515-AS-024 5/15/2015	MW-202 GW-38443-051215-GL-007 5/12/2015	MW-203 GW-38443-051315-GL-011 5/13/2015
Sample Date.			6/24/2015	Duplicate	3/13/2013	3/11/2013	Duplicate	3/11/2013	3/13/2013	3/12/2013	3/13/2013
Parameters	Units	MCL		2 aprioato			Zupilouto				
Volatiles											
1,1,1-Trichloroethane	μg/L	200	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	μg/L	-	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	μg/L	5	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	μg/L	-	1.0 U	1.3 U	0.44 J	1.0 U	1.0 U	0.48 J	1.0 U	1.0 U	0.32 J
1.1-Dichloroethene	μg/L	7	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	μg/L	70	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromo-3-chloropropane (DBCP)	μg/L	0.2	2.0 U	2.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dibromoethane (Ethylene dibromide)	μg/L	0.05	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	μg/L	600	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	μg/L	5	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	μg/L	5	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	μg/L	-	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	μg/L	75	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	-	10 U	13 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Hexanone	μg/L	-	10 U	13 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Methyl-2-pentanone (Methyl isobutyl ketone) (MIBK)	μg/L	-	10 U	13 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Acetone	μg/L	-	10 U	13 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	μg/L	5	35	35	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	μg/L	80	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	μg/L	80	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane (Methyl bromide)	μg/L	-	1.0 UJ	1.3 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 UJ	1.0 UJ
Carbon disulfide	μg/L	-	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	μg/L	5	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	μg/L	100	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.4
Chloroethane	μg/L	-	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform (Trichloromethane) Chloromethane (Methyl chloride)	μg/L	80	1.0 U 1.0 U	1.3 U 1.3 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
cis-1,2-Dichloroethene	μg/L	70	1.0 U	1.3 U	1.8	1.0 U	1.0 U	0.38 J	1.0 U	1.0 U	5.0
cis-1,3-Dichloropropene	μg/L μg/L	-	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Cyclohexane	μg/L μg/L	-	1.0 O	1.3 0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane	μg/L	80	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane (CFC-12)	μg/L	-	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	μg/L	700	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Isopropyl benzene	μg/L	-	0.75 J	0.68 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methyl acetate	μg/L	-	10 U	13 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methyl cyclohexane	μg/L	-	4.6	3.5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methyl tert butyl ether (MTBE)	μg/L	-	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylene chloride	μg/L	5	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Styrene	μg/L	100	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	μg/L	5	1.0 U	1.3 U	1.0 U	1.0 U	0.31 J	1.0 U	0.45 J	1.0 U	1.0 U
Toluene	μg/L	1000	0.25 J	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	μg/L	100	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	μg/L	-	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	μg/L	5	1.0 U	1.3 U	1.0 U	1.8	1.9	0.54 J	1.4	2.3	1.1
Trichlorofluoromethane (CFC-11)	μg/L	-	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trifluorotrichloroethane (Freon 113)	μg/L	-	1.0 U	1.3 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl chloride	μg/L	2	1.0 U	1.3 U	1.7	1.0 U	1.6				
Xylenes (total)	μg/L	10000	0.56 J	2.5 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U

Notes:

GHD 038443Davision1-T2

U - Not detected at the associated reporting limit.

J - Estimated concentration.

UJ - Not detected; associated reporting limit is estimated.

Detected values shown with bold font and values above MCL shown with color font and border.

The individual trihalomethanes (bromodichloromethane, bromoform; dibromochloromethane, chloroform) all have the MCL of 80 μ g/L listed in the RSL table. However, 80 μ g/L is the MCL for Total Trihalomethanes.

Table 2

Summary Of Analytical Results Groundwater Sampling - May/June 2015 South Dayton Dump And Landfill Site Moraine, Ohio

Sample Location: Sample ID: Sample Date:			MW-204 GW-38443-051115-GL-001 5/11/2015	MW-209 GW-38443-051215-GL-008 5/12/2015	MW-209A GW-38443-051315-AS-016 5/13/2015	MW-210 GW-38443-051515-AS-023 5/15/2015	MW-210A GW-38443-051515-AS-021 5/15/2015	MW-210B GW-38443-051515-AS-022 5/15/2015	MW-212 GW-38443-051215-GL-006 5/12/2015	MW-215A GW-38443-051315-AS-014 5/13/2015	MW-215B GW-38443-051315-AS-015 5/13/2015	MW-216 GW-38443-051415-AS-020 5/14/2015
Parameters	Units	MCL										
Malatilaa												
Volatiles		000	4.011	4.011	4.011	0.511	4.011	4411	4.011	4.011	4711	47.11
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	μg/L	200	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	2.5 U 2.5 U	1.0 U 1.0 U	14 U 14 U	1.0 U 1.0 U	1.0 U 1.0 U	1.7 U 1.7 U	17 U 17 U
1,1,2-Trichloroethane	μg/L	- 5	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
1,1-Dichloroethane	μg/L		1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 J	17 U
1,1-Dichloroethene	μg/L	- 7	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.2 J 1.7 U	17 U
1,2,4-Trichlorobenzene	μg/L	70	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
1,2-Dibromo-3-chloropropane (DBCP)	μg/L	0.2	2.0 U	2.0 U	2.0 U	5.0 U	2.0 U	29 U	2.0 U	2.0 U	3.3 U	33 U
1,2-Dibromoethane (Ethylene dibromide)	μg/L μg/L	0.2	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	2.0 U	1.0 U	3.3 U 1.7 U	33 U 17 U
1,2-Dibromoethane (Ethylene dibromide)		600	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
1,2-Dichloroethane	μg/L	5	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
	μg/L	5 5	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
1,2-Dichloropropane	μg/L	-		1.0 U	1.0 U		1.0 U		1.0 U	1.0 U	1.7 U	17 U
1,3-Dichlorobenzene	μg/L	-	1.0 U			2.5 U		14 U				
1,4-Dichlorobenzene	μg/L	75	1.0 U	1.0 U	1.0 U 10 U	2.5 U	1.0 U	14 U	1.0 U	0.37 J	1.7 U 17 U	17 U
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	-	10 U 10 U	10 U 10 U	10 U	25 U 25 U	10 U 10 U	140 U 140 U	10 U	10 U 10 U	17 U	170 U 170 U
2-Hexanone	μg/L	-							10 U			
4-Methyl-2-pentanone (Methyl isobutyl ketone) (MIBK)	μg/L	-	10 U	10 U	10 U	25 U	10 U	140 U	10 U	10 U	17 U	170 U
Acetone	μg/L	-	10 U	10 U	10 U	25 U	10 U	140 U	10 U	10 U	17 UJ	170 UJ
Benzene	μg/L	5	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	390	1.0 U	2.8	1.7 U	17 U
Bromodichloromethane	μg/L	80	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
Bromoform	μg/L	80	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U 1.7 U	17 U 17 U
Bromomethane (Methyl bromide)	μg/L	-	1.0 UJ	1.0 UJ	1.0 UJ	2.5 U	1.0 U	14 U	1.0 UJ	1.0 UJ		
Carbon disulfide	μg/L	-	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
Carbon tetrachloride	μg/L	5	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
Chlorobenzene	μg/L	100	0.31 J	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.7	1.7 U	17 U
Chloroethane	μg/L	-	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
Chloroform (Trichloromethane)	μg/L	80	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
Chloromethane (Methyl chloride)	μg/L	-	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
cis-1,2-Dichloroethene	μg/L	70	1.0 U	1.0 U	1.9	14	1.0 U	14 U	1.0 U	0.93 J	35	480
cis-1,3-Dichloropropene	μg/L	-	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
Cyclohexane	μg/L	-	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	0.58 J	1.7 U	17 U
Dibromochloromethane	μg/L	80	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
Dichlorodifluoromethane (CFC-12)	μg/L	700	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
Ethylbenzene	μg/L	700	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	0.48 J	1.7 U	17 U
Isopropyl benzene	μg/L	-	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	0.71 J	1.7 U	17 U
Methyl acetate	μg/L	-	10 U	10 U	10 U	25 U	10 U	140 U	10 U	10 U	17 U	170 U
Methyl cyclohexane	μg/L	-	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
Methyl tert butyl ether (MTBE)	μg/L	-	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
Methylene chloride	μg/L	5	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
Styrene	μg/L	100	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
Tetrachloroethene	μg/L	5	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
Toluene	μg/L	1000	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
trans-1,2-Dichloroethene	μg/L	100	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
trans-1,3-Dichloropropene	μg/L	-	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
Trichloroethene	μg/L	5	1.0 U	1.0 U	1.0 U	78	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
Trichlorofluoromethane (CFC-11)	μg/L	-	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
Trifluorotrichloroethane (Freon 113)	μg/L	-	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	14 U	1.0 U	1.0 U	1.7 U	17 U
Vinyl chloride	μg/L	2	1.0 U	1.0	9.3	2.5 U	32	14 U	1.0 U	0.31 J	5.4	350
Xylenes (total)	μg/L	10000	2.0 U	2.0 U	2.0 U	5.0 U	2.0 U	29 U	2.0 U	2.0 U	3.3 U	33 U

Notes:

U - Not detected at the associated reporting limit.

J - Estimated concentration.

UJ - Not detected; associated reporting limit is estimated.

Detected values shown with bold font and values above MCL shown with color font and both

The individual trihalomethanes (bromodichloromethane; bromoform; dibromochloromethan chloroform) all have the MCL of 80 μ g/L listed in the RSL table. However, 80 μ g/L is the MCL for Total Trihalomethanes.

Table 2

Summary Of Analytical Results Groundwater Sampling - May/June 2015 South Dayton Dump And Landfill Site Moraine, Ohio

Sample Location: Sample ID: Sample Date:			MW-219 GW-38443-051315-GL-013 5/13/2015	MW-220 GW-38443-062315-JC-027 6/23/2015	MW-221 GW-38443-062415-JC-028 6/24/2015	MW-222 GW-38443-051215-GL-010 5/12/2015	MW-222A GW-38443-051215-GL-009 5/12/2015	MW-229 GW-38443-051415-AS-018 5/14/2015	MW-229 GW-38443-051415-AS-019 5/14/2015 Duplicate	MW-A GW-38443-062315-JC-026 6/23/2015	MW-B GW-38443-062315-JC-025 6/23/2015
Parameters	Units	MCL							Duplicate		
Volatiles											
1,1,1-Trichloroethane	μg/L	200	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
1,1,2,2-Tetrachloroethane	μg/L	-	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
1,1,2-Trichloroethane	μg/L	5	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
1,1-Dichloroethane	μg/L	-	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
1,1-Dichloroethene	μg/L	7	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
1,2,4-Trichlorobenzene	μg/L	70	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
1,2-Dibromo-3-chloropropane (DBCP)	μg/L	0.2	2.0 U	2.9 U	20 U	2.0 U	2.0 U	8.0 U	5.0 U	6.7 U	67 U
1,2-Dibromoethane (Ethylene dibromide)	μg/L	0.05	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
1,2-Dichlorobenzene	μg/L	600	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
1,2-Dichloroethane	μg/L	5	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
1,2-Dichloropropane	μg/L	5	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
1,3-Dichlorobenzene	μg/L	-	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
1,4-Dichlorobenzene	μg/L	75	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	-	10 U	14 U	100 U	10 U	10 U	40 U	25 U	9.9 J	330 U
2-Hexanone	μg/L	-	10 U 10 U	14 U	100 U	10 U 10 U	10 U	40 U	25 U	33 U	330 U
4-Methyl-2-pentanone (Methyl isobutyl ketone) (MIBK)	μg/L	-		14 U	100 U		10 U 10 U	40 U	25 U	33 U	330 U
Acetone	μg/L	5	10 U 1.0 U	14 U 38	100 U 10 U	10 U 1.0 U	1.0 U	40 U 4.0 U	25 UJ	53 80	34 J 250
Benzene Bromodichloromethane	μg/L	80	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U 2.5 U	3.3 U	33 U
Bromoform	μg/L μg/L	80	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
Bromomethane (Methyl bromide)	μg/L μg/L	-	1.0 UJ	1.4 UJ	10 UJ	1.0 UJ	1.0 UJ	4.0 UJ	2.5 U	3.3 UJ	33 UJ
Carbon disulfide	μg/L		1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
Carbon tetrachloride	μg/L	5	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
Chlorobenzene	μg/L	100	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
Chloroethane	μg/L	-	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
Chloroform (Trichloromethane)	μg/L	80	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
Chloromethane (Methyl chloride)	μg/L	-	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
cis-1,2-Dichloroethene	μg/L	70	1.0 U	40	290	17	1.0 U	9.8	8.7	3.3 U	33 U
cis-1,3-Dichloropropene	μg/L	-	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
Cyclohexane	μg/L	-	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	67	200
Dibromochloromethane	μg/L	80	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
Dichlorodifluoromethane (CFC-12)	μg/L	-	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
Ethylbenzene	μg/L	700	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	8.2	600
Isopropyl benzene	μg/L	-	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	21	38
Methyl acetate	μg/L	-	10 U	14 U	100 U	10 U	10 U	40 U	25 U	33 U	330 U
Methyl cyclohexane	μg/L	-	1.8	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	40	87
Methyl tert butyl ether (MTBE)	μg/L	-	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
Methylene chloride	μg/L	5	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
Styrene	μg/L	100	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
Tetrachloroethene	μg/L	5	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
Toluene	μg/L	1000	0.25 J	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	2.8 J	64
trans-1,2-Dichloroethene	μg/L	100	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
trans-1,3-Dichloropropene	μg/L	-	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
Trichloroethene	μg/L	5	1.0 U	1.4 U	10 U	1.0 U	1.0 U	85	73	3.3 U	33 U
Trichlorofluoromethane (CFC-11)	μg/L	-	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
Trifluorotrichloroethane (Freon 113)	μg/L	-	1.0 U	1.4 U	10 U	1.0 U	1.0 U	4.0 U	2.5 U	3.3 U	33 U
Vinyl chloride	μg/L	2 10000	1.0 U	2.9 U	110 20 U	5.6 2.0 U	1.0 U 2.0 U	4.0 U	2.5 U	3.3 U 3.9 J	33 U 1100
Xylenes (total)	μg/L	10000	2.0 U	2.9 U	20 0	2.U U	2.0 0	8.0 U	5.0 U	3.9 J	1100

Notes:

U - Not detected at the associated reporting limit.

J - Estimated concentration.

UJ - Not detected; associated reporting limit is estimated.

Detected values shown with bold font and values above MCL shown with color font and both

The individual trihalomethanes (bromodichloromethane; bromoform; dibromochloromethan chloroform) all have the MCL of 80 µg/L listed in the RSL table. However, 80 µg/L is the MCL for Total Trihalomethanes.

Attachment 1 - Well Purging Records

MONITORING WELL RECORD FOR LOW-FLOW PURGING												
	Project Dat	ta: Project Name: Ref. No.:		71 DAYEN 8443-70-15	Dung	Date: Personnel:		5/11/15 6, LEV			-	
	Monitoring	Well Data: Well No.:	Mu).	- 20 1				<u> </u>	<u> 5 </u>	<u> </u>	-	
	_	our PID (ppm): surement Point:	0.	Oppm R.		turated Screen L epth to Pump Int			10' ?7,75'		- -	<u>.</u> .
		ll Depth (m/ft): ll Depth (m/ft):		33 ¹ 3,95		Well Diamete Well Screen Volt			Z" Puc		- - -	
	Depth of S	ediment (m/ft):		Drawdown		Initial Depth to	Water (m/ft):	17	,25			
	Time	Pumping Rate (mL/min)	Depth to Water (mlft)	from Initial Water Level " (m/ft)	Temperature ° C	Conductivity (mS/cm)	Turbidity NTU	DO (mg/L)	pН	ORP (mV)	Volume Purged, Vp (L)	No. of Well Screen Volumes Purged "
	1155 866	en Pureina		cision Required (5):		±0.005 or 0.01 (6)	±10 %	±10 %	±0.1 Units	±10 mV		
	1200	150 pat faces	12.26	0,01	15.17	1.231	39.3	1.52	8,79	-48.7	750ml	
	1205	÷ <u>r</u>	12,25	-o -	15.02	1,225	28.5	0,94	9,01	-72,3	1500 ML	
	1210	11	12.25	.0	15.01	1229	24.2	P8-1	9.06	-79.7	2,250	
	1215	ñ	12.25	<u>.</u>	15.19	1.228	19.4	0.80	9.07	- <i>8</i> 89	300 mc	
	1220	200 me win	1225	ح	15.14	1.235	19.1	0.73	9.06	-91.8	4,000 mc	
	1225	200mc/m	1225	. 😜	14.92	1. Z3'7	13.9	0.65	9.03	-948	5000-6	
	1230	200milion	12.25	<u> </u>	15.10	1.235	134	0.63	9.63	-વકુ.ય	6,000 mc	
	1235	200 mily	12.25	€	15.13	1.235	13.6	0.60	9.01	-97,4	7,000 mc	ļ <u>.</u>
			· · · · · · · · · · · · · · · · · · ·		···-							
						<u> </u>					ļ	
	<u></u>		. "			 _						-
	<u></u>			<u> </u>	<u>us</u> 25	227	24 1-54	38 G 67		<u> </u>	<u> </u>	<u> </u>

(1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.

(3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.

⁽²⁾ The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, V_s=π*(r²)*L in mL, where r (r=D/2) and L are in cm. For Imperial units, V_s=π*(r²)*L* (2.54)³, where r and L are in inches

⁽⁴⁾ Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.

⁽⁵⁾ For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

and the same				MON	ITORING WE	LL RECORD F	OR LOW-FLC	W PURGIN	<u>1G</u>	1-57	J =	Diaplica
	Project Dat	ra: Project Name: Ref. No.:	Sour	H DOYTON L	perio	Date: Personnel:		5/11/5 6.101015	·		·	
	Monitoring	Well Data:						A. SCHWA	RTZ			
	J	Well No.:	Mw-	102								
	Vap	our PID (ppm):		سمور	Sa	turated Screen L	ength (m/ft):		10			
	Mea	surement Point:			De	epth to Pump In	take (m/ft) ⁽¹⁾ :		24.97			
		ll Depth (m/ft):		301		Well Diamete			2" PV	2	. -	_
M		ll Depth (m/ft):	31.	.56		Well Screen Volu					. <u>[</u>	
	Depth of S	ediment (m/ft):_				Initial Depth to	Water (m/ft):	-7.	.91	*******		
	Time	Pumping Rate (mL/min)	Depth to Water (m/ft)	Drawdown from Initial Water Level [~] ' (mlft)	Temperature ° C	Conductivity (mS/cm)	Turbidity NTU	DO (mg/L)	pH	ORP (mV)	Volume Purged, Vp (L)	No. of Well Screen Volumes Purged'''
	1320	BEEN Pure	ina Pre	cision Required ⁽⁵⁾ : 2000 MM July	±3 %	±0.005 or 0.01 (6)	±10 %	±10 %	±0.1 Units	±10 mV	_	
	1325	200mi/ma	7.91	0	13.82	0.855	33.0	1.80	7.31	2.7	750MC	
	1330	200 MU/MEN	7.91	0	12,51	0.867	40,2	0,90	7,21	6.5	1500 M	
	1335	200 M/Air	7,91	-0-	12,01	0.868	79.5	0,85	7.24	6.2	2250ml	
	1340	200 prefren	7.91	0	11,87	0.869	59.7	1.40	7,25	10.7	3000 in	
	1345	200 ML/Min		-0-	12.10	0,870	<i>355</i>	1.61	7.27	11.8	3750M	
	1350	ZOOM/MIN		<i>→</i>	12.21	0.870	26,0	1,73	7,28	13:2	4500M	
	[355	200 milmu	7.91	0	12.27	0.871	21.2	1.62	7,29	13,3	5250 24	
COMPANY OF THE PERSON OF THE P	1400	200 ML/mul	7.91	0	12,49	0.872	15.5	1.33	7,31	12.1	6000 M	
	1405	200 Mi/MW	7.91	0	12,33	0,872	13.0	1,19	7,29	12.6	6750 m	
	1410	200 ML/MIN	7.91	-0-	12.40	0.875	9.94 *	0.98	7.30	9.6	7500 MC	
	1415	200 MI/MIN	7,91	-e -	12.12	0.875	8,44	0,86 ×	7,26	8,9	8250 ML	
	1420	200 M/med	7.91	0	12.35	0.876	7,94	0. 5 8 ×	7.26	4.8	9000 ml	<u> </u>
	1425	200 AL / WW	7.91	-	12.45	0.877	7.77	0.63	7.27	3.6	9750 ML	
	1430	200 milmin	7.91	0	i2.47	0,877	7.81	0,72	7.26	3.3	10500 MY	

Notes

(1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.

(3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.

⁽²⁾ The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = n^*(r^2)^*L$ in mL, where r (r=D/2) and L are in cm. For Imperial units, $V_s = n^*(r^2)^*L^*$ (2.54)³, where r and L are in inches

⁽⁴⁾ Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged = Vp/Vs.

⁽⁵⁾ For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

Project Data: Project Name: Date: Personnel: Ref. No.:

MONITORING WELL RECORD FOR LOW-FLOW PURGING

Monitoring Well Data:

Well No .: Vapour PID (ppm): Measurement Point:

Constructed Well Depth (m/ft): 37 Measured Well Depth (m/ft): Depth of Sediment (m/ft):

Saturated Screen Length (m/ft): Depth to Pump Intake (m/ft)(1): 26,84 Well Diameter, D (cm/in): Well Screen Volume, V_s (L)⁽²⁾:

165.

Initial Depth to Water (m/ft):

Time	Pumping Rate (mL/min)	Depth to Water (m/ft)	Drawdown from Initial Water Level''' (m/ft)	Temperature ° C	Conductivity (mS/cm)	Turbidity NTU	DO (mg/L)	pH	ORP (mV)	Volume Purged, Vp (L)	No. of Well Screen Volumes Purged**
M30 F	an purge @	Pre: 200ml/ui	cision Required ⁽³⁾ :	±3 %	±0.005 or 0.01 (6)	±10 %	±10 %	±0.1 Units	±10 mV		
1455	200	6.71	-07_	12.78	0.834	380	1.40	8.22	-96.7	1,000mc	
j5000	200	671	-02	12.29	-856	325	t.08	8-25	-102.4	2,000	
1505	200	6.74	.05	12.18	.865	231	-78	8.24	- 103.2	3,000	
1510	200	6.75	.06	12.08	-872	162	- 6 8	8.27	- 106. j	4,000 mi	
1515	200	6.75	.06	12.08	885	99.5	.48	8.25	-104.7	5,000 ,	
1520	200	6.75	. ٥٧ه	i2.23	. 699	P:+39_	. 39	8.25	-106.4	6,000,	
1525	200	6.75	. ۵ 🧓	12.08	909	_ 39.8	. 36_	8.23	- i03.8	7,000 mi	
<u>1530</u>	200	6.74	PO-	12.13	916	56.7	- 31	8.20	- 103,5	2005 mi	
1535	200	6.74	.07	11.97	.925	46.1	. 29	8.13	-9ñ.3	9,000 mg	
1540	200	6.73	.08	1200	930	41.1	- 28	9.11	-98.3	10,000, ml	
1945	200	6-73	- 68	11.95	.935	43.5	. 2৭	808	-98.1	11,000 000	
15 <i>5</i> 0	200	6.73	. 08	11.93	934	44.6	-30	රීරු	- 96,7	12,000 inc	
								<u> </u>			

(1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.

(3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.

For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

⁽²⁾ The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_* = \pi^*(r^2)^* L$ in mL, where r(r=D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r^2)^*L^*(2.54)^3$, where r and L are in inches

⁽⁴⁾ Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.

MONITORING WELL RECORD FOR LOW-FLOW PURGING

Project Da	Project Name: _	Source	Duffor	·	_ Date:		5/12/15			. —		
	Ref. No.:	038ଣ	43 - 70-15		Personnel:					-		
·	g Well Data: Well No.: _		-212-			•	HUNCTZ					
-	oour PID (ppm):_	0,0	2 ppm		iturated Screen L epth to Pump In			0		- =		
nstructed We	usurement Point: _ ell Depth (m/ft): _		8,0		Well Diamete	er, D (cm/in)	: 2	2 * ′		· -		
	ell Depth (m/ft):	S <i>g</i>	. 76		Well Screen Vol	• • •		69-		-		
Depth of S	Sediment (m/ft):_		Drawdown		Initial Depth to	vvater (m/ft)	:	8.51		.		
Time	Pumping Rate (mL/min)	Depth to Water (m/ft)	from Initial Water Level "" (mlft)	Temperature ° C	Conductivity (mS/cm)	Turbidity NTU	DO (mg/L)	pН	ORP (mV)	Volume Purged, Vp (L)	No. of Well Screen Volumes Purged ***	THE CONTRACT OF THE PARTY OF TH
0850	BECIN	Prec	ision Required ⁽⁵⁾ :	±3 %	±0.005 or 0.01 (6)	±10 %	±10 %	±0.1 Units	±10 mV	-		
1855	200 milmes	18.86	0.35'	13.36	0.648	270	1,65	8.05	-28.9	1000.1	COURT TO	KSPAC
0900	150 mi/mu	18:85	0.34	13,40	0.719	10,6	1,34	8,10	-34,6	1750-4		
0905	150 ml/ms	16.85	0,34	13.62	0.724	5.35	1,21	8-15	-40,7	2500 ML		
0910	150 ml/mas	18.85	0.34'	13.44	0.725	4,39	1.19	8.19	-46,1	3250 ML		
0915	150 encloses	18:84	0.33	13.82	0.738	3.72	1.05	8,39	-64.6	4000-1	-	
0920	150 ML/mm	18.84	0.33	13.86	0,747	2.81	0.25	8,61	-84,1	4750 Mi		
0925	150 mL/mw	18.82	0.31	13,64	0.752	5,58	0,26	8.75	- 96,1	5500ML		
0930	150 Mlma	18.82	0,31	13:43	0.749	2,01	0,35	8.77	-100,5	6250 M	-]
0935	150 ML/MIN	18.82	0.31'	13:40	0.748 1	1.52	0.39 -		-104,0	7000 ml		
0940	150 Melan		0.30	13.45	0.747	1:24	0.40	8.73	-99.8	7750 L] [

- (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.
- (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r (r=D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r^2)^*L^*$ (2.54)³, where r and L are in inches
- (3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.
- (4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.
- (5) For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

MONITORING WELL RECORD FOR LOW-FLOW PURGING												
Project Da	ta: Project Name: Ref. No.:	S04 038	174 Daytov 143-70-15	Dunp	Date: Personnel:	6,	/12/15 LEWIS SCHWAR	: 72.				
Monitoring	g <i>Well Data:</i> Well No.:	AAz	V-202			<i>f</i> 3:	XHWAR	<u> </u>	···	,		
Var	oour PID (ppm):	. 700		Saf	turated Screen Le	enoth (m /ft):		10'		_		
_	asurement Point:		0, R,		epth to Pump Int		. 2	10-17-1		· \-		
	ell Depth (m/ft):	41	,00		Well Diamete	r. D (cm/in):		6.12'		· -		
	ell Depth (m/ft):	40.		7	Well Screen Volu		1,	69		· -		
Depth of S	Sediment (m/ft):				Initial Depth to V	Water (m/ft):		6g 22.46				
Time	Pumping Rate (mL/min)	Depth to Water (m/ft)	Drawdown from Initial Water Level "' (m/ft)	Temperature ° C	Conductivity (mS/cm)	Turbidity NTU	DO (mg/L)	<i>p</i> H	ORP (mV)	Volume Purged, Vp (L)	No. of Well Screen Volumes Purged ***	
1015 BE	ELAN PURGNIC	@ 158 Prec	ision Required (*):	±3 %	±0.005 or 0.01 (6)	±10 %	±10 %	±0.1 Units	±10 mV			
1020	150ml/m	22,47	0.Di	15,98	1.642	7.61	5,28	6.79	64.4	750 mi		
1025	130 makin	2246	-	18,91	1.69i	4.8%	كإرضا	6.64	77.7	1500		
1030	أكالسراسية	22.46	-0	15 <u>.87</u>	1.714	1.64	3.93	6.53	882	2250		
1035	150 milain	22.46	\(\phi\)	15.93	1.721	0.87	4.42	6.46	940	3,000		
1040	130 milan	22140	Ð	15-91	[.7ZA	0.53	3.87	6.43	98.4	3,750		
1045	150 my	22.46	<i>↔</i>	15.90	i-725	0.45	3.58	6.39	101.9	4500		
10.50	150 mela	. 22:4c	<u> </u>	1242	1.726	0.45	373	6.38	103.5	5250		
055	150 milmin	22.46	۵	१इ.५५	1.726	0-34	3.64	6.35	106.5	6,000		
1100	150 milyum	22.46	6	1,5,9,5	1-725	.30	3.63	6.34	Q8. G	6.750		
					·							
							_		<u> </u>			
					<u> </u> _		<u> </u>			<u></u>		

⁽¹⁾ The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.

⁽²⁾ The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r (r = D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r^2)^*L$ in mL, where r and L are in inches

⁽³⁾ The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.

⁽⁴⁾ Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.

⁽⁵⁾ For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

Λ	Monitoring Well Data:					
	Well No.:_	Mis- 209	<u></u>			
	Vapour PID (ppm):	0.0	Saturated Screen Length (m/ft):	80 tr		
	Measurement Point:	TOR	Depth to Pump Intake (m/ft) ⁽¹⁾ :	23.50		
Const	tructed Well Depth (m/ft):	260+	Well Diameter, D (cm/in):	2"		
Me	asured Well Depth (m/ft):	7817	Well Screen Volume, V _s (L) ⁽²⁾ :	1.78		

Initial Depth to Water (m/ft): 4.40 Depth of Sediment (m/ft):

	Pumping Rate	Depth to Water	from Initial Water Level "	Temperature	Conductivity	Turbidity	DO	pH	ORP	Volume Purged, Vp	No. of Well Screen Volumes
Time	(mL/min)	(m/ft)	· (m/ft)	"C	(mS/cm)	NTU	(mg/L)		(mV)	(L)	Purged "
		P_1	recision Required (>):	±3 %	±0.005 or 0.01 (6)	±10 %	±10 %	±0.1 Units	±10 mV		

1120 b	ayon Dusig @ 200 m	Calman							-	
1125	200 m/m 4,61	0.21	13.28	0.780	207	1,39	8,43	£70.6	1000	LOWER 7
130	150 mc/min 4,53	6.13	13,61	0.781	229	1,46	8,30	-64.3	1750	
1135	150 Myn 452	0,12	13.7/	0.784	194	1.16	8,25	-63,5	2220	
1140	150 m2/m 4,52	0.12	13,80	0,784	160	1,15	8,23	-63.5	30000	
1145	150 mbber 4,51	0.11	13,92	0784	128	1.18	8,21	-63,0	3750 11	
1150	150 Mc/m 4,51	0,11	13:84	0,783	103	1,27	8,15	- 57,9		
1155	150 ML/MM 4,52	6:12'	13.90	0,785	91,3	1,37	8,10	~ 35,3	5250 40	
1200	150 mi/min 4.52	0.12	1396	0.785	82.6	1.55	8-05	-53.5	6 mone	
1205	150mejan 4.52	0.12	13.89	0.784	四年	1.57	8.02	-51.9	6750	
									<u></u>	<u> </u>
									ļ	
			₃ "4.Z		9.23	,3				

(1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.

(3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.

Project Data:

Measured Well Depth (m/ft):

⁽²⁾ The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, V_s=n*(r²)*L in mL, where r (r=D/2) and L are in cm. For Imperial units, $V_s = r^*(r^2)^*L^*(2.54)^3$, where r and L are in inches

⁽⁴⁾ Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.

⁽⁵⁾ For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

		9		MON	ITORING WE	LL RECORD FO	OR LOW-FLO	OW PURGI	NG	GW-	38443-0512	5-62-000
	Project Dat		0		,			, ,				(1413
1		Project Name:	Sou	TH DAYTON	Dump	Date:		12/15				
		Ref. No.:	038	443 -70-15		Personnel:		CEWES	-		_	
	Monitoring	Well Data:				,	K. A	SCHWART-	-		-	
	-	Well No.:	MW-	ASSS		*						
1	Vap	our PID (ppm):		Oppu	Sat	urated Screen L	ength (m/ft):	/	0		_	_
	Meas	surement Point:	7.	O.R.	De	pth to Pump Int	ake (m/ft) ⁽¹⁾ :	28	8.Zo		_ -	_
Co	nstructed Wel	ll Depth (m/ft):	30'			Well Diamete	r, D (cm/in):	2	11			
	Measured Wel	ll Depth (m/ft):	30,	12	7	Well Screen Volu	ime, $V_s(L)^{(2)}$:	1.	67			
	Depth of Se	ediment (m/ft):			1	nitial Depth to V	Water (m/ft):	2	4.67			31
				Drawdown								
		Pumping Rate	Depth to Water	from Initial Water Level™	Temperature	Conductivity	Turbidity	DO	pН	ORP	Volume Purged, Vp	No. of Well Screen Volumes
	Time	(mL/min)	(m/ft)	(m/ft)	°°C	(mS/cm)	NTU	(mg/L)	P	(mV)	(L)	Purged "
	1320	BELOW PURE	E @ Pres	cision Required ⁽⁵⁾ : مرابط ا	±3 %	±0.005 or 0.01 (b)	±10 %	±10 %	±0.1 Units	±10 mV	_	-
	1325	700 mymin	24.69	0,021	15,43	1,572	90.4	0,33	6.50	109.5	1000ml	
	1330	200 My MIN	24,70	0,03'	15.51	1,530	70,3	0.50	6,45	113,1	2000M	
1	133	200 MUMM	24,70	0.03'	15,56	1.495	41.4	0.64	6,43	114.9	3,000	
	1340	ZODNEJANA	24.71	0,04'	15.55	1,476	23.0	227	6,36	119,2	4,000	
	1345	200 me/mix	2471	0-04	15.55	1.467	16.8	2.24	6.33	121.0	5,000	
	1350	Zeonelium	924.71	6.04	15,66	1,467	11.7	0.32	6.30	125.8	6.000	
	1355		24. Ti	0.04	15.76	1454	9.00	8.46	6.29	125.5	7,000	
2	1400	~ ***	28.71	0.04	15.77	1.413	7.24	0.48	6.26	128.9	8,000	
	12,00		- 2A-71	5.04	15.73	1.445	5.55	0.47	6.22	130.0	9,000	
1	5 1410	200 men	2474	0.04	15.72	1.439	4.94	0.47	6.22	1315		
	· ·											
	· .											
10	3											
なるとのできるから	10											
N	otes:	•			.46 517	1.57%	1 270	.77 .01				
÷ (:	.) The pump inta	ake will be placed at	the well screen i	mid-point or at a min	nimum of 0.6 m (2	ft) above any sedim	ent accumulated	at the well bott	om.			
		in volume will be basinits, $V_s = \pi^*(r^2)^*L^*$ (2.			ength (L). For metr	ric units, $V_s = \pi^*(r^-)^*I$	in mL, where r	(r=D/2) and L	are in cm.			
	3) The drawdown	n from the initial wa	ater level should	not exceed 0.1 m (0.1								
(t)		ontinue until stabili							urbid			
3		o be clearing, or unle to. of Well Screen Vo			ng sugntiy outside	or the stabilization	criteria and appo	ear to be				
(5		ity, the average valu			mS/cm or where	conductivity >1 mS	/cm ±0.01 mS/cr	n.				

MONITORING WELL RECORD FOR LOW-FLOW PURGING

				141014	HORING WE	LL RECORD PO	JK LOW-ILC	WICKGI	<u>x.G</u>			
Projec	ct Date											
		Project Name:		Dayby D	رتسنة	Date:	5/12/19	5		···.		
		Ref. No.: _	<u> </u>	<u> Fi3</u>		Personnel:	<u> 1 Selui</u>	C C V				
,, .		717 77 D					K Dingo	* +				
Moni	toring	Well Data:	۸.				_					
		Well No.:_	• •	222					_			
	Vapo	our PID (ppm):_	<u> </u>			urated Screen L			(/ -		. =	 :
	Meas	urement Point: _	1.0	<u>. Z.</u>	De	epth to Pump Int	ake (m/ft) ^w :	/07	ंदर		. -	<u>!</u>
Constructe	ed Wel	l Depth (m/ft):_				Well Diamete		2"			. -	<u>_</u>
Measure	ed Wel	l Depth (m/ft):	104.	40	7	Well Screen Volu	$me, V_s (L)^{(2)}$:				· <u>-</u>	
Dept	h of Se	ediment (m/ft):]	Initial Depth to V			25.71		·	
		-		Drawdown							•	
		Pumping	Depth to	from Initial							Volume	No. of Well
		Rate	Water	Water Level	Temperature C	Conductivity	Turbidity	DO	pH	ORP	Purged, Vp	Screen Volumes Purged '''
	те	(mL/min)	(mlft)	(mift) ision Required ⁽⁵⁾ :	±3 %	(mS/cm) ±0.005 or 0.01 (6)	NTU ±10 %	(mg/L) ±10 %	±0.1 Units	(mV) ±10 mV	(L)	Purgea
144	<u>0 De</u>	un Durge	200 me	(min	10 70	2,01000 0, 0.01	220 70	110 70	1,0.1 0,1113			
\ધ્ય	5	200 mc/s	257i	<u>&</u>	الدري	1.050	73.3	2.04	83	-680	1000 mc	
148	SO.	200 minin	25.71	. ()	16.31	1049	61.6	1.75	8 z*	-63.7	200 anc	
143	55	200 malain	25.70	, Oi	1660	1.043	यस उ	6.65	8.17	~6Z.5	300044	
1.50	50	ZCONCINCA	25.62	بنء	16.5z	i, ७ सम्द	25.3	02.00	8.11	- 28.7	4,000	
155	১১১	200 milyan	25,6€	, 5 3	16.95	LOUZ	1921	0.62	8.02	~ 35.C	5,000 ~	•
13	ು	200 nation	25.68	,03	16.69	1.046	14.9	0.67	8.00	-51.8	6,000	
15	15	750 when	25-68	EO,	1663	1.40	12:07	6.63	801	·51.7	7,000	
15	<u>رخ 2</u>	200 milyan	22.68	-6.2	16.63	1-041	8.79	0.62	801	-52.9	8,000	
(5)	25	200 mel min	25.68	-O'3	1663	1.042	9.74	0.63	8.00	-2Z-8	مر,000_	
(%)	30	200 min	25.GA	.03	16,42	ابكان	8.40	0.61	8.00) K	10.000	
15	35	Zetvellnin	2549	.03	1654	<u>ک</u> لان. ١	6.10	0.67	8.93	-57.6	11000	
75	40	DID. W. Juan	25.68	<i>3</i> 3	1652	1-042	39 ف	0.63	8.62	-,22.3	12,000.	C
		1										
									7,4,4			,

150

- (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.
- (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r (r = D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r^2)^*L^*$ (2.54)³, where r and L are in inches

14

- (3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.
- (4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.
- (5) For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

			MON	NITORING WE	ELL RECORD FO	OR LOW-FLO	OW PURGII	<u>NG</u>					
Project D	ata: Project Name:	Souti	H DAYTON I	<i>کینیو</i>	Date:		5/13/15	-			 .		
	Ref. No.:		8443-70-1.		Personnel:		CEWIS						
						4.	SCHWAT	ಲ <u>ಕ</u>		-			
Monitori	ng Well Data:		_								39,90		
	Well No.:		v-203					į			÷,27		
ı	apour PID (ppm):_		DO POM		turated Screen Lo epth to Pump Int			0.0		- =	- 341,62ª		
4	easurement Point:		o. P.	-	•	. ,		<i>3¥,8</i> ₹′		- -	<u> </u>		
2	/ell Depth (m/ft): _ /ell Depth (m/ft):		37'	• .	Well Diamete Well Screen Volu					- -			
			39.67	•				9.65		- <u> </u> -			
Depth of	Sediment (m/ft): _			-	Initial Depth to V	vvater (m/it):		7,65		-			
Time	Pumping Rate (mL/min)	Depth to Water (m/ft)	Drawdown from Initial Water Level **' (m/ft)	Temperature ° C	Conductivity (mS/cm)	Turbidity NTU	DO (mg/L)	pH	ORP (mV)	Volume Purged, Vp (L)	No. of Well Screen Volumes Purged '"		
0800	Beein Purc	Pre	cision Required ⁽⁵⁾ : 50 AL/MA	±3 %	±0.005 or 0.01 (6)	±10 %	±10 %	±0.1 Units	±10 mV	_		_	
0895	150 ML/ NW	19.65	-0-	12.88	1.548	49.5	2,51	7.01	34.8	750 ML	ADJUST TZ	2004	4/
0810	200 mil/min	19.63	+.02	13.24	1,543	30:3	1,40	7,26	17.1	1750 ML		7	
0815	ZEOMLINE		-8	13:37	1,541	17.4	1.03	7.27	16.6	2750 M			
0800	200 Milmi	19,64	١٥، د	13,47	1.542	10,9	0.90	7.24	18,2	3750 M		11	
08:25	200 pullon	19,65	نن -	13.51	1.543	9.70	0.88	7.73	18.7	4750 m			
0830	200 Ml/min	19.65	-e	13.55	1.544 /	8.25	0.86	7,23	19.00	5750 ML		1	
0835	200 MU/Am	19,64	+0.01	13154	1,545	6,03	0,84	7,23	18.5	6750 M		11	
0840	200 MZ/M	19.65	-0-	13.59	1.546	4.68	0.83	7,23	18.2	7750M			
										· · · · · · · · · · · · · · · · · · ·		1 1	
			<u> </u>		·								
	_											1	
	_								-			1	
		······································								\		11	
			† 		 	 				 		⊣ I	

- (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.
- (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r (r=D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r^2)^*L^*$ (2.54)³, where r and L are in inches
- (3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.
- (4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.
- (5) For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

MONITORING WELL RECORD FOR LOW-FLOW PURGING Project Data: Project Name: 😽 🛝 Personnel: 6/6 Ref. No.: Monitoring Well Data: Well No.: MIW-101A Vapour PID (ppm): Saturated Screen Length (m/ft): 0.0 196+ Depth to Pump Intake (m/ft)(1): Measurement Point: <u> 29. 5 د</u> てのマ Constructed Well Depth (m/ft): Well Diameter, D (cm/in): 2514 Measured Well Depth (m/ft): Well Screen Volume, Ve (L)(2): 34.90 15.00 Depth of Sediment (m/ft): Initial Depth to Water (m/ft): Drawdown Depth to from Initial Pumping Volume No. of Well Water Level" Rate Water Temperature Conductivity Turbidity DO pHORP Purged, Vp Screen Volumes "C (m/ft) NTU(mg/L)Purged " (mL/min)(m/ft)(mS/cm)(mV)Time Precision Required (5): ±3 % ±0.005 or 0.01 ±10% ±10 % ±0.1 Units ±10 mV 796 ৫৪৫১ (5.09, 11.39 6 922i 2.88 7.75 -13.5 750,0 - 50:41 74.0 8.20 0905 200 mill 15.08 **⊸** 11.19 0 934 1.49 -50.0 1.750 0195 8.31 200:44. 12.08 -1172 0.936 37.6 0.77 60.8 2750 0915 0.936 200 milais 822 15.08 9 11.22 26.3 0.60 638 3.75c. 0920 200 ml === 11.26 0.936 6.30 15.08 0 19.7 835 - 66.5 ¥,750× 0925 11.25 200 mc/nm 15.08 12.3 6.43 -C-936 8.35 ~ **6€**.3 5.750,0 6.46 ZOOM Juin \Leftrightarrow 11.25 16.5 8 34 ୦୩3୯ 15.093 0.936 - ሬዓ. (6750

.33

2.7 جاڻ.

Notes:
(1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.

⁽²⁾ The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, V_s=n*(r²)*L in mL, where r (r=D/2) and L are in cm. For Imperial units, $V_s=\pi^*(r^2)^*L^*$ (2.54)3, where r and L are in inches

⁽³⁾ The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.

⁽⁴⁾ Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.

For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

MONITORING WELL RECORD FOR LOW-FLOW PURGING Project Data: Project Name: Ref. No.: Personnel: 0.3A44 Monitoring Well Data: Well No.: MW- 215 Vapour PID (ppm): Saturated Screen Length (m/ft): 1084 Depth to Pump Intake (m/ft)(11): Measurement Point: T.0.2 29 50 Well Diameter, D (cm/in): Constructed Well Depth (m/ft): 36 2" PUC Measured Well Depth (m/ft): Well Screen Volume, V_s (L)⁽²⁾:

Depth of Sediment (m/ft): Initial Depth to Water (m/ft): 24.73 Drawdown Depth to from Initial Volume No. of Well Pumping Water Level " Conductivity Turbidity DO Rate Water Temperature pHORP Purged, Vp Screen Volumes " C Purged " (mS/cm) NTU Time(mL/min) (m/ft)(m/ft)(mg/L)(mV)(L)

يما. ا

0955 b	Egin Durge @	150 mc/m	ision Required ^(ə) :	±3 %	±0.005 or 0.01 (6)	±10 %	±10 %	±0.1 Units	±10 mV	_
1000c	Bomelinin	TOP	. 26	13.42	1.186	> i000c	5 46	<u>د.80</u>	750	750mL
1005	150 milan	てるア	. Zic	13.41	1.180	> 1000	5.75	6.76	83.5	(300
1010	150 melain	TOP	· Uc	13.26	1.182	> 1000	666	6.65	94.5	2.250
1015	150ml min	T.O.P	. 26	13.37	1.193	> 1000	6,45	6.61	71.99	3,000 mc
j020	150.majain	T.O.7	. 26	13.51	1.203	~ 1000	6.50	689	76.2	3,750
1025	150 milain	TOP	.26	13.77	1.Z.16	261	6.31	7.07	52.3	4,500
1030	150×100	TOR	.26	13.88	1.ZZ5	174	6 33	7.20	54.6	5,250
1635	150 ml/min	T.07	.26	1399	1.232	139	6.27	7.28	43.5	6,0%
1040	150mc/min	T. OP	-26	14.02	1. 245	118	6.27	7.36	36.i	6.750
1045	150 mc/m	TOP	-26	14.08	1-26-1	116	623	7.45	30.4	7,500
1030	150 nc Juin	TOP.	چ کار	14.21	1.270	(18	6.14	7-41	34.2	8 250
										<u> </u>

12.43

1.2240

(1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.

(2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_a = \pi^*(x^2)^*L$ in mL, where r(x=D/2) and L are in cm. For Imperial units, $V_s=r^*(r^2)^*L^*(2.54)^3$, where r and L are in inches

ui

(3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.

31.70

(4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.

For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

در للين

									w- 38 40	13-05131	5-65-0	(1305)
				MON	ITORING WE	LL RECORD F	OR LOW-FLC				inste	•
	Project Date	7·									۲*	39
			July 2	Douber T	Dunk	Date:	5/3/3	_				
		Ref. No.:	0382			Personnel:	A. Scher				-	
		•					K llien	<u>.</u>			-	
	Monitoring						-					
		Well No.:		ZISA								
l	_	our PID (ppm):				turated Screen L		10			_ -	<u></u>
	Meas	urement Point:	T.0	.Z	De	epth to Pump Int		28:	<u> </u>		- -	<u> </u>
ı		l Depth (m/ft):	29			Well Diamete		2.			_	
M		l Depth (m/ft):		<u>3i</u>		Well Screen Volu	-	1.4			- [-	
	Depth of Se	diment (m/ft):				Initial Depth to '	Water (m/ft):		<u> </u>		_	
		D	Don't to	Drawdown							T7-7····	NT CT17 17
		Pumping Rate	Depth to Water	from Initial Water Level‴	Temperature	Conductivity	Turbidity	DŌ	рH	ORP	Volume Purged, Vp	No. of Well Screen Volumes
	Time	(mL/min)	(m/ft)	(m/ft)	· · c	(mS/cm)	NTU	(mg/L)	<u> </u>	(mV)	(L)	Purged '"
	1230 +	edin Smedi	Pre	cision Required (o):	±3 %	±0.005 or 0.01 (6)	±10 %	±10 %	±0.1 Units	±10 mV		
	1235	ZCCont	24.04	. ()4	15 AZ	1.545	36.3	1.51	3/80	-7.5	1,000 mc	
	1246	200 mi	24,04	-04	15,62	1.516	140	0.88	7.80	~ (NO	2,000 cac	
	1245	700 mc	منن من	0.04	15.62	してらと	12.0	1.05	9.98	-12.4	3,000 m	
1	1250	· zoawc	24 m	0.04	15.91	1.476	5.71	1. #2	7-09	-63	HOODERC	
	1255	20000	24.04	0.54	٧ . ي	(, 464	5.16	1,36	マルマ	-7-4	500mc	
	1300	200m	242,00	0-34	15.63	1.479	4.99	1-34	7.61	-7.3	Cocomo	
								<u> </u>				
1												
						, , , , , , , , , , , , , , , , , , ,						
						1						
											<u> </u>	
											<u> </u>	
				<u> </u>								
							600	Part I				
Not		ke will be placed at	the well screen :	mid-point or at a mi	inimum of 0.6 m (2	ff) above any sedim	ent accumulated :	(}-	4,4 *	. >		
	The well screen	ı volume will be ba	sed on a 1.52 me	tres (5-foot) screen l								
	_				2.63		1 COO T ()					
	The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom. The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = n^*(r^2)^* L$ in mL, where r (r=D/2) and L are in cm. For Imperial units, $V_s = n^*(r^2)^* L^*$ (2.54) ³ , where r and L are in inches The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min. Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid											
	The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r (r=D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r^2)^*L^*$ (2.54) , where r and L are in inches The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min. Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be											
(5)		o. of Well Screen Vo v. the average valu			5 mS/cm or where	conductivity >1 mS	/cm ±0.01 mS/cm	` . n.				
1,27		y,		o	,			-				

(1410)

			MON	ITORING WE	ELL RECORD F	OR LOW-FLO	<u>W PURGI</u>	<u>NG</u>		Paris St	AN C
Project Dat		_				-1					
	Project Name:	SOUTH ?	AGTON DUM	v	Date:	2/13/5	<u> </u>			_	 -
	Ref. No.:	038443			Personnel:	4- Sette		············		_	
Manitonia	T47-11 TO -4-					<u>r- 200</u>	<u> १८०७</u>	 -		_	
Monitoring			77							1	
••	Well No.:	mu)- 2		•		.4 / ///	·	£1			
_	our PID (ppm):	6.0			turated Screen L epth to Pump In			† 4		_ =	
	surement Point:		·Z	. De		· · · · · ·		· · · · · · · · · · · · · · · · · · ·		_ \-	
	ll Depth (m/ft):	5		•	Well Diamete		<u>Z</u> ,			_ =	
	ll Depth (m/ft):	5	<u> </u>	•	Well Screen Vol		ع				
Depth of S	ediment (m/ft):				Initial Depth to	Water (m/ft):	24.	22		_	
Time	Pumping Rate (mL/min)	Depth to Water (m/ft)	Drawdown from Initial Water Level™ (m!ft)	Temperature ° C	Conductivity (mS/cm)	Turbidity NTU	DO (mg/L)	pН	ORP (mV)	Volume Purged, Vp (L)	No. of Well Screen Volumes Purged '"
1330 t	>e-jungures	Pre	cision Required (>):	±3 %	±0.005 or 0.01 (6)	±10 %	±10 %	±0.1 Units	±10 mV		
1335	2000	24.22		15.98	1.231	15.6	520	7,58	9.0	ارص	
1740	20000	24.18	. 04	15.72	1.344	7.28	3 صاء)	7.60	1-3	2,000	
1345	200 m	24.18	0.04	15.64	1.390	7-80	0.94	9.56	9-6	3,000	
1350	200-46/22	24.18	· Où	16.62	<u> </u>	2.44	687	7.53	10.2	4,000	···
1355	300 mi	24-18		15.09	1.398	147	10,80	7-51	9.8		
1400	200 mi	24.18	-04	15.69	1. 399	1,38	0.76	7-49	1-0	5,000	
	20000	24.08		17.69	1.400	1.17				600	
1405	200000	20,00	0.04	1/-601	1.900	1. 1+	0.74	7-49	9.9	7,000 ac	
				<u> </u>						<u> </u>	
									· · · · · · · · · · · · · · · · · · ·		
					<u> </u>		_				
				<u> </u>		<u> </u>					
Notes:	•			O : 41) 0×	1-341	5-3-1	0-27	7-53	9.86		

⁽¹⁾ The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.

⁽²⁾ The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, V_s=π*(x²)*L in mL, where r (r=D/2) and L are in cm. For Imperial units, V_s=π*(r²)*L* (2.54)³, where r and L are in inches

⁽³⁾ The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.

⁽⁴⁾ Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.

⁽⁵⁾ For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

MONITORING WELL RECORD FOR LOW-FLOW PURGING Project Data: Project Name: Date: Ref. No.: Personnel: C)38443 Monitoring Well Data: Well No.: MW-ZOYA Vapour PID (ppm): Saturated Screen Length (m/ft): Depth to Pump Intake (m/ft)(1): Measurement Point: T.O 2 Constructed Well Depth (m/ft): 371 Well Diameter, D (cm/in): るい Measured Well Depth (m/ft): Well Screen Volume, V_s (L)⁽²⁾: 59.40 - 8 Depth of Sediment (m/ft): Initial Depth to Water (m/ft): 4.76 Drawdown from Initial No. of Well Pumping Depth to Volume Water Level" DOORPScreen Volumes Rate Water Temperature Conductivity Turbidity pHPurged, Vp "C Purged " Time (mL/min) (m/ft)(mlft) (mS/cm)NTU (mg/L)(mV)(L)Precision Required (3): ±3 % ± 0.005 or 0.01±10 % ±10 % ±0.1 Units $\pm 10 \, mV$ H30 bern Durg 200 mejaron 1435 7,49 -20.9 200 4.76 1669 1.110 >1000 064 0000 we 0 -26<u>6</u> 806 200 0 16,63 1.121 >1000 0.37 Z000... 1440 4.76 16.67 71000 8.07 -28.8 0.31 1445 200 4.71 Ü 3,000 1.12 0 -26.6 0.50 200 6.70 7 (000 8.00 4.000 1417 UND 1-123 -26. (O 1-128 0-67 200 (i) 62 71300 8.00 5,000 11-20 458 8.00 200 -27. (a,000 4-76 \circ < VO 6-30 1.126 7 1000 -27-5 1-76 7-99 7.000, 200 4-76 (-103 93.4 O 6-05 202 1510 15.94 1.120 8.01 -28 4 70 O 30000 200 0.69 0.50 1.124 سر. س 8.03 ~29L & 4,76 Ĝ 5,30 1515 200 9.000 -29.2 0.67 8: CI 10,000 at 15-20 シロシ 420 \bigcirc 6-04 1.124

127

. 1717

1-126

1-26

9-01

8.00

છે. **ા**

00

0.49

0-33

19-36

0.50

3215

34.3

-21.7

-- 23.3

30.0

13/2004

Notes: (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.

16-06

10000 16.07

4.23

(3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.

Ō

O

Û

The

وللأساما

4.71

For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

525

135

200

7,00

200

⁽²⁾ The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r(r=D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r^2)^*L^*(2.54)^3$, where r and L are in inches

⁽⁴⁾ Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.

MONITORING WELL RECORD FOR LOW-FLOW PURGING

	Project Dat		South 384013	Zayta D	:	Date: Personnel:	5/04/05 A-School	5			-	
	Monitoring	Well Data:					<u>CCa</u>				-	
		Well No.:_	MW-Z	29								
	Vap	our PID (ppm): _	60			turated Screen L			10 G1		_	_
	Meas	surement Point:	To	<u>P</u>	De	epth to Pump Int	take (m/ft) ⁽¹⁾ :				_ -	
		I Depth (m/ft):_		5	_	Well Diamete			Z "		_ -	
		1 Depth (m/ft): _	<u> </u>	22		Well Screen Volu			<u>م. ۱</u>			
	Depth of Se	ediment (m/ft):_				Initial Depth to '	Water (m/ft):	<u>2</u>	6.32		-	
	Time	Pumping Rate (mL/min)	Depth to Water (mlft)	Drawdown from Initial Water Level "" (m/ft)	Temperature ° C	Conductivity (mS/cm)	Turbidity NTU	DO (mg/L)	pН	ORP (mV)	Volume Purged, Vp (L)	No. of Well Screen Volumes Purged "
	1450 F	Salve Duise	-@ 1S	cision Required ⁽⁶⁾ :	±3 %	±0.005 or 0.01 (6)	±10 %	±10 %	±0.1 Units	±10 mV	_	
	เนอ5	The wife in	26.32	0	15.69	1.167	68.5	3.35	5.96	1818	750 mil	44
	1500	200 refuir	26.32	⇔	15.23	ी.(ग्प्	63.8	2.17	<i>58</i> 8	1859	1.750-11	
	1505	200 min	26.32	0	15-13	1.182	486	1.23	586	1869	2,750 ~2)	ain
	1510	200 milyans	26.32	0	14.94	L.(3S	41.9	1.35	5.86	185.7	3,750	
	1515	200 mg/200	26.32	~	14,90	1.187	33.8	1.32	5,86	£.23)	4,750	
	1520	200 rel from	26.32	⊕	14.87	6.189	302	1.35	5.86	484.0	5,750	
·	·											
						<u> </u>						
						-						
		<u> </u>										
L		<u> </u>			્લ્યું	1 1624		(2				

- (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.
- (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_*=\pi^*(r^2)^*L$ in mL, where r (r=D/2) and L are in cm. For Imperial units, $V_*=\pi^*(r^2)^*L^*$ (2.54)³, where r and L are in inches
- (3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.
- (4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.
- (5) For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

			MON	ITORING WE	LL RECORD F	OR LOW-FLO	OW PURGII	NG			
Project Data	•										
	Project Name:	South	Druben I	كسى	Date:	5/14/	1,5				
	Ref. No.:	38443	3	•	Personnel:	G. Cers	``			,	
	47 17 D					A- Sche	c6				
Monitoring V											
T 7	Well No.:	<u> </u>			10	.1 ((6)		- n			
_	ur PID (ppm): _ irement Point:	<u> </u>			turated Screen L epth to Pump Int			<u>54</u> _		· -	_
	-	T.O.		150	- "					. -	=
Constructed Well Measured Well			> tr		Well Diamete Well Screen Volu			Z"		. -	
		<u>(6</u>	LOF				*********	-8		. <u>L-</u>	
Deput of Sec	liment (m/ft): _			i	Initial Depth to	vater (III/It):		21.67			
	Pumping	Depth to	Drawdown from Initial							Volume	No. of Well
	Rate	Water	Water Level"	Temperature	Conductivity	Turbidity	DO	pH	ORP	Purged, Vp	Screen Volumes
Time	(mL/min)	(m/ft)	(m/ft) ision Required ⁽⁵⁾ :	*C	(mS/cm) ±0.005 or 0.01 (6)	NTU ±10 %	(mg/L) ±10 %	±0.1 Units	(mV) ±10 mV	(L)	-Purged "
1540 R	egu Rege	@ 150°	ul juin			220 70		2012 0111113			
1545	150 ml/m	21.67	· &	1772	6.758	22.8	2.80	8.22	-574	750mc	
1550	200 mijan	21.67	.	17.68	9 දින	175	1.26	8.63	-60.6	1,750ml	
1555	200 min	21.67	Φ	17,88	6.917	17.3	1.34	8.6i	-67.2	2,750 ac	
1600	200 m/m	21.67	Ф	18.∞	0.934	18.1	1.23	පි.පළ	- 683	3,750 ,,	
1603	200mL/min	21.67	&	18.06	0.941	16.3	1.24	8.52	-669	4.750	
1610	200 m/min	21.67	<u> </u>	28.57	0.944	10.4	1.24	8.52	-67.7	5,750	
1615	200mil	21.67	ф	17.51	0.943	9.23	1.22	8.52	-68.C	6750	
1620	200ml/20	21.67	&	17.48	0.941	9.00_	1.23	8.50	-67.3	7,750	
1625	ZOONGAIN	21.67	•	17.45	0.943	7.53	1.23	8.51	-67.4	৪ 75১_	
1630	200 mc/ain	21.67		17.46	0.942	8.36	1.24	8.49	-70.6	9,750	
	,										
											
Notes:				.53 ,52	730 942	,4 5 . 30	, 123				

Notes: .53,52 .730 412 .753 .723
(1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.

⁽²⁾ The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r(r=D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r^2)^*L^*(2.54)^3$, where r and L are in inches

⁽³⁾ The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.

⁽⁴⁾ Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.

For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

MONITORING WELL RECORD FOR LOW-FLOW PURGING Project Data: Project Name: South Dard Ref. No.: Monitoring Well Data: Well No.: MW- ZWA Vapour PID (ppm): Saturated Screen Length (m/ft): 0.0 Depth to Pump Intake (m/ft)(1): Measurement Point: Constructed Well Depth (m/ft): Well Diameter, D (cm/in): Z^{n} Well Screen Volume, $V_s(L)^{(2)}$: Measured Well Depth (m/ft): 8791 -8 Initial Depth to Water (m/ft): Depth of Sediment (m/ft): 73 45 Drawdown Volume No. of Well Depth to from Initial Pumping Water Level" Mater ago Data

Time	Rate (mL/min)	Water (m/ft)	Water Level (m/ft)	Temperature " C	Conductivity (mS/cm)	Turbidity NTU	DO (mg/L)	pН	ORP (mV)	Purged, Vp (L)	Screen Volumes Purged '''
0810 to	an Disac @	Pres	cision Required ⁽⁵⁾ :	±3 %	±0.005 or 0.01 (6)	±10 %	±10 %	±0.1 Units	±10 mV		
0813	(SDunifain	23.45	4	15.51	0.820	337	4.01	748	71.0	750~	
0820	150mblam	2346	.00	15,54	6.922	142	3.97	7.57	48.3	1.5000	
<u> </u>	200ml/mm	23.46	-01	15.39	0.967	168	2.05	8.00	0.3	2,50000	
0830	200 wall win	2346	-01	15.35	0.989	669	165	808	<i>-دا</i> ره	3,500	
<u>6</u> 235	200 m/m	23.46	10.	(5.35	Ó.999	34.0	1.41	8.03	2.2	4,500 46	
080	200 milyan	2346	-01	15-34	1.003	27.9	125	5.02	-1-2	5,500 W	
0845	200 ml/min	23 46	.00	15.35	1.006	43.5	1.21	8.05	-2.8	6.500 ml	
0850	200ml/nin	23.46	-01	15.38	1007	61.4	1.21	807	-6.2	7,500.2	
08 <i>55</i>	200 milain	23.46	D .01	1526	1.00%	70.6	1.20	8.60	-10.0	ව, ණ	
<u>এ</u> ৭৯৯	ZOOMHain	23.46	€ .04	(5.43	1.009	740	1.23	8.10	7:01-	9,500	
				`							
_					<u> </u>		<u> </u>	<u> </u>			
	<u>L</u>				(S) (S)	11.00 68	- Z' <				

Notes:
(1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.

(3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.

For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

1-00

⁽²⁾ The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, V_s=n*(r²)*L in mL, where r (r=D/2) and L are in cm. For Imperial units, $V_s=\pi^*(r^2)^*L^*(2.54)^3$, where r and L are in inches

⁽⁴⁾ Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.

			MON	ITORING WE	LL RECORD FO	OR LOW-FLO	W PURGI		C =		~
Project Da	ta:							10	52		
-	Project Name:	Same	Depa De	<u> </u>		5/15/15					
	Ref. No.:	3844	3-70-15		Personnel:	F. Schoon				-	
Monitoring	z Well Data:					Glevis				-	
	Well No.:	MW-2	:08								
Var	oour PID (ppm):	<u> </u>	••	Sat	turated Screen Le	ength (m/ft):	ε	(Ft			
-	surement Point:	T <u>.</u> 0			epth to Pump Int					- <u> </u> -	<u> </u>
	ell Depth (m/ft):	<u>(-c</u>			Well Diamete	- r. D (cm/in):	2:			- -	<u></u>
	ell Depth (m/ft):	10	4.63	7	Well Screen Volu		. 8			- -	=
Depth of S	Sediment (m/ft):				Initial Depth to V	- - Vater (m/ft)		50		- 🗀	
r	- (,,		Drawdown		1 /2	, , , _				-	
Time	Pumping Rate (mL/min)	Depth to Water (m/ft)	from Initial Water Level ``'' (m/ft)	Temperature ~ C	Conductivity (mS/cm)	Turbidity NTU	DO (mg/L)	pН	ORP (mV)	Volume Purged, Vp (L)	No. of Well Screen Volumes Purged™
		Pre	cision Required (a):	±3 %	±0.005 or 0.01 (b)	±10 %	±10 %	± 0.1 Units	±10 mV		<u> </u>
I	Begin purge		Societaine	155	0 == 0	0 9):	7 94	Δ×α	11: 33	11000	
0915	200 miljunion		. Oi	(5.go	6.762	234	236	8.47	-414	1,000 000	
0920	200 melain	23.51	.01	15.89	0.821	167	1-324	866	-67.4	2,000 mi	
0925	ZONLINEN	23.51	-01	1599	6.845	115	1.31	873	-76.8	3,000,00	
6936	200 miljuin	23.51	·01	16.14	6.85z	_*75.4_	1.29	8.77_	<u> </u>	4,000,000	
0935	200 refuir	23.51	.ن	16:26	0.856	48.0	1.30	874	-837	5,000 46	
Q410	Zoonefran	23.51	.O\	16.32	6.857	29.0	1.28	8.71	-83.4	6,000 we	
0945	200 coljan	23.51_	·a	16.57	0.857	21.0	1-29	8.73	~87.5	7,000	
09.50	200 milan	23.51	· OX	16 68	୦,୫ଟ7	169	1.28	છે.7ય	-90.1	8,000	
ওৎহ্য	200 milain	23.50	.01	₹6.62	0.858	13.2	1.29	8.72	96.7	9,000	
1000	200 milain	23.56	-01	1696	86.860	9.61	1.29	8.70	-400	10,000 mc	
1005	200 unin	23.5(-0i	17.07	0.859	8,57	1.28	8.67	-88.8	14,000 mc	
100	200 milain	23.50	-01	17.16	0.839	7.09	1-27	8.68	-918_	12,000 mc	
1015	ZOBuclain	23.51	.01	17.11	0.858	6.2545	1.29	868	-92.5	13 000	
1020	200ml/n:n	23.51	٠٥٠	17.32	0.854	6.13	1.29	8.79	-107.8	14.000 uc	
Notes:				X8 45	£358	152/2/52	12	·			

(3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.

⁽¹⁾ The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.

⁽²⁾ The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r (r=D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r^2)^*L^*$ (2.54)³, where r and L are in inches

⁽⁴⁾ Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.

⁽⁵⁾ For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

	·····			MON	ITORING WE	LL RECORD FO	OR LOW-FLC	W PURGIN	_	0-		
	Project Data	1:							2	20/2		
	-	Project Name:	South	Doyku - 70-15	<u> Juni</u>	Date:	5/15/15					 -
		Ref. No.:	36	كلين - 10- ١٦	<u> </u>	Personnel:	A. Belwood	2			-	
	Monitoring	Well Data:					Carlenia.		<u> </u>	*****	-	
	Ü	Well No.:	Mi	- Z10R								
	Vapo	our PID (ppm):				turated Screen L					-	
	Meas	urement Point:			D	epth to Pump Int	ake (m/ft) ⁽¹⁾ :				- _ _	
		l Depth (m/ft):				Well Diamete					- -	
М	easured Wel	l Depth (m/ft):				Well Screen Volu	$\operatorname{Ime}, \operatorname{V}_{\operatorname{s}}(\operatorname{L})^{(2)}$:	· · · · · · · · · · · · · · · · · · ·				
	Depth of Se	diment (m/ft):				Initial Depth to	Water (m/ft):				-	
	Time	Pumping Rate (mL/min)	Depth to Water (mlft)	Drawdown from Initial Water Level "' (m/ft)	Temperature ° C	Conductivity (mS/cm)	Turbidity NTU	DO (mg/L)	pН	ORP (mV)	Volume Purged, Vp (L)	No. of Well Screen Volumes Purged '*'
			Pre	cision Required ^(a) :	±3 %	±0.005 or 0.01 (6)	±10 %	±10 %	±0.1 Units	±10 mV		
	1625	2004	23.51	10.	17.80	0.859	4.85	1-25	8.78	-HLQ	15,00c	
	1000	<u> </u>									1	
												1
										Ţ		
			·		·							
Ì												
				_								
			· · · · · · · · · · · · · · · · · · ·									
			T	T		1		1			<u> </u>	

- (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.
- (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, V_s=π*(r²)*L in mL, where r (r=D/2) and L are in cm. For Imperial units, V_s=π*(r²)*L* (2.54)*, where r and L are in inches
- (3) The drawdown from the initial water level should not exceed 0.1 m (0.5 ft). The pumping rate should not exceed 600 mL/min.
- (4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.
- 5) For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

				MON	NITORING WE	ELL RECORD F	OR LOW-FLO	OW PURGII	NG GW-	38443-	051515	45-023
Projec	ct Date	ı:									Cin	20)
,		Project Name:	Social ?	Dankon T	J	Date:	5/1 18</td <td>_</td> <td></td> <td></td> <td></td> <td></td>	_				
		Ref. No.:	030343	- 		Personnel	A. School	•			_	
							K they	[_	
Monit	toring	Well Data:					•				[
		Well No.:	<u> - المثلة - ا</u>	210	_				•			
	Vapo	our PID (ppm):	00			turated Screen L			0A		_	
	Meas	urement Point:	T-0-	2	. D.	epth to Pump In	take (m/ft) ⁽¹⁾ :				_	<u></u>
l		Depth (m/ft):		5	_		er, D (cm/in):		4		_	_
Measure	ed Well	l Depth (m/ft):	38.	58	_	Well Screen Vol	ume, $V_s(L)^{(2)}$:		6		_	_
Depti	h of Se	diment (m/ft):			_	Initial Depth to	Water (m/ft):	21	.99		_	
				Drawdown	•						_	
İ		Pumping	Depth to	from Initial	_			- 5			Volume	No. of Well
Tin	H1P	Rate (mL/min)	Water (m/ft)	Water Level™ (m/ft)	Temperature " C	Conductivity (mS/cm)	Turbidity NTU	DO (mg/L)	pН	ORP (mV)	Purged, Vp (L)	Screen Volumes Purged '"
			Prec	cision Required (3):		±0.005 or 0.01 (6)	±10 %	±10 %	±0.1 Units	±10 mV		
• '		~ ·)	jener - 2-99		1.001	m 01.	(4)		1000	- Ti T	
105		200	21,99		16-68	1.231	7-77	178	702	66-9	1,000 mc	
101	3	100	24-49		16-16	1,240	C.23	0-23	テル	02-8	2000	
عبا ا	٥٥	20 c	219	<u> </u>	16-51	1242	a.Hle	032	7-14	67-4	3,000-1	
40	7	700	21-219	₽ P	Lv.57	1-2-61	3.90	0.29	7.17	60-0	<u>الممم</u> د	
110	0	200	71-99	0	16-56	1-237	277	0-85	7-26	53.9	5,000mc	····
((1	5	200	26.99	త _	16.69	1-238	3.05	19.86	224	48.6	6,000 mc	
	I]		-
												
					 	 			 			
 												
 			 	<u></u>	<u> </u>				-		 	
		<u> </u>							 		 -	
!								<u> </u>			_	
L	i			<u></u>	, 491.4	1.240	<u> </u>	13P)	7.17		1	

- (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.
- (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, V_s=π*(r²)*L in mL, where r (r=D/2) and L are in cm. For Imperial units, V_s=π*(r²)*L* (2.54)³, where r and L are in inches
- (3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.
- (4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.
- (5) For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

MONITORING WELL RECORD FOR LOW-FLOW PURGING Project Data: Project Name: Ref. No.: Monitoring Well Data: MW-201 Well No.: Vapour PID (ppm): Saturated Screen Length (m/ft): 10ft 05 Depth to Pump Intake (m/ft)(1): TUZ Measurement Point: 32 Constructed Well Depth (m/ft): Well Diameter, D (cm/in): 711 Well Screen Volume, $V_s(L)^{(2)}$: Measured Well Depth (m/ft): 31.87 عدا Initial Depth to Water (m/ft): Depth of Sediment (m/ft): 5-25 Drawdown from Initial Volume No. of Well Pumping Depth to Water Level " RateWater Temperature Conductivity Turbidity DO pΗ ORPPurged, Vp Screen Volumes " C Purged " (mL/min) (m/ft)(mS/cm)NTU (mg/L)(mV)Time Precision Required (5): ±3 % ± 0.005 or 0.01° £10 % ±10 % ±0.1 Units $\pm 10 \, mV$ 1700 Dearn Driver 6 16-17 1-198 5.75 1.50 12 0 2-57 81-4 ار000سد 1205 100 82 \circ 16.09 200 ى ئى كى دن 71-4 7-10 2.000-4 11/1 700 23.4 5,75 200 Ò 6.41 -00 3.00 euc 125 196 23.2 4 149 コバ 71-9 1720 Ö 204 30.08 200 5.35 16.4 70,2 ۵ 15.99 1.205 عان .ن 1225 200 5000 -68.7 0-04 4117 575 MO u 1230 2...00 0 6.67 1-198 14.1 9-38 717 8 0-65 127 (735 5-75 5.60 1.201 といひ 7,000 ---5.75 1-198 7.16 ¢ 5-52 0-04 1740 200 Bassona Till 15-39 1.197 0,39 0-05 68. 1245 5-75 D 200 0.00 69.3 5-75 5.35 1.195 4,13 200 O 4-08 V50 2-32 2005 10°E.10 200 15-39 1-194 4.39 7,13 11,000 1755

- (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.
- (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r')^*L$ in mL, where r (r = D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r')^*L^*$ (2.54)³, where r and L are in inches
- (3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.
- (4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged = Vp/Vs.
- (5) For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

Page 1 of 2 6W-38443-067315-JC-025 (1300)

Rate Water Water Level (3) Temperature Conductivity Turbidity DO pH ORP Purg Time (mL/min) (m/ft) "C (mS/cm) NTU (mg/L) (mV) (O9 Precision Required (5): ±3 % ±0.005 or 0.01 (6) ±10 % ±0.1 Units ±10 mV	
Ref. No.:	
Monitoring Well Data: Well No.: MW- 15 Vapour PID (ppm): Saturated Screen Length (m/ft): Measurement Point: Depth to Pump Intake (m/ft) ⁽¹⁾ : Constructed Well Depth (m/ft): Well Diameter, D (cm/in): 2" Measured Well Depth (m/ft): Well Screen Volume, V _s (L) ⁽²⁾ : Depth of Sediment (m/ft): Initial Depth to Water (m/ft): 12-40 (Pumping Rate Water Water Level (n) Temperature Conductivity Turbidity DO pH ORP Purg Time (n1L/min) (m/ft) (nn/ft) 0 C (ns/cm) NTU (ns/L) (ms/L) (ms/V) (ms/V	
Well No.: MW- 13 Vapour PID (ppm): Saturated Screen Length (m/ft):	
Vapour PID (ppm): Saturated Screen Length (m/ft):	
Measurement Point: Depth to Pump Intake $(m/ft)^{(1)}$: Constructed Well Depth (m/ft) : Well Diameter, D (cm/in) : 2^n : Measured Well Depth (m/ft) : Well Screen Volume, V_s $(L)^{(2)}$: Depth of Sediment (m/ft) : Initial Depth to Water (m/ft) : 2^n :	
Constructed Well Depth (m/ft): Well Diameter, D (cm/in): 2^{n} Measured Well Depth (m/ft): Well Screen Volume, V_s (L) ⁽²⁾ : Depth of Sediment (m/ft): Initial Depth to Water (m/ft): 2^{n} Drawdown Pumping Depth to from Initial Rate Water Water Level (5) Temperature Conductivity Turbidity DO pH ORP Purg Time (mL/min) (m/ft) (m/ft) °C (mS/cm) NTU (mg/L) (mV) (mV) (0) Precision Required (5): $\pm 3\%$ ± 0.005 or 0.01 (6) $\pm 10\%$ $\pm 10\%$ ± 0.1 Units ± 10 mV	
Measured Well Depth (m/ft): Well Screen Volume, V_s (L) $^{(2)}$: Depth of Sediment (m/ft): Initial Depth to Water (m/ft): $22 \cdot 40^{\circ}$ Drawdown Pumping Depth to from Initial Vol Rate Water Water Level (3) Temperature Conductivity Turbidity DO pH ORP Purg. Time (mL/min) (m/ft) (m/ft) $^{\circ}$ C (mS/cm) NTU (mg/L) (mV) (Precision Required (5): ± 3 % ± 0.005 or 0.01 (6) ± 10 % ± 10 % ± 0.1 Units ± 10 mV	
Depth of Sediment (m/ft): Initial Depth to Water (m/ft):	
$Drawdown \\ Pumping Depth to from Initial \\ Rate Water Water Level ^{(s)} Temperature Conductivity Turbidity DO pH ORP Purg. Time (mL/min) (m/ft) ^{o}C (mS/cm) NTU (mg/L) (mV) ($	
09 Precision Required (5): ±3 % ±0.005 or 0.01 (6) ±10 % ±10 % ±0.1 Units ±10 mV	olume No. of Well rged, Vp Screen Volumes (L) Purged (*)
1110 000 400 22.45' 12.63 1.156 42.5 1.14 7.9 76.40	
1115 +005 400 92.41 0.01 17.25 1-130 28.2 1.14 7-57 -84.4	
1120 1010 400 22-11 0 17.38 1-143 18.9 1-18 1-57 -87.7	
1175 40rf 400 22-41 0 12-21 1-182 11-2 1-38 7.55 - es.4	
130 102 400 2241 0 (7.23 1.243 3.08 1.50 7.53 -33.9	
113 100 100 100 100 1. 279 (. 80 1.43 7-51 -84-4	
1110 10-70 400 12-41 0 16-97 1-326 8-26 1-47 7-49 -63-2	
11/15 9/45 400 12:41 0 12:07 1-328 7-63 1-50 7-42 -82-9	
1155 400 22,41 0 17,17 1,470 6,02 1,59 7,44 -30.1	
200 22-41 D 17-03 1-521 4-29 172 7-46 78.1	
1210 400 2001 0 1695 1-545 4.1B 1.79 7-44 76.5	
14× 900 22.41 0 14.02 1.569 J.UT 1.73 2.43 -75.0	

- (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.
- (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r (r=D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r^2)^*L^*$ (2.54)°, where r and L are in inches
- (3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.
- (4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.
- (5) For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

			MO	NITORING WE	ELL RECORD F	OR LOW-FLO	W PURGIN	<u>[G</u>			
Project Dat	ra: Project Name Ref. No.	SWIN OH	o River Terminal 	50. 038443	Date: Personnel:	5/ /15 Jason Close	6/23/0 K WGE				
Mea Constructed We Measured We	Well No. pour PID (ppm) surement Point			D	nturated Screen I Pepth to Pump Ir Well Diamet Well Screen Vol Initial Depth to	take $(m/ft)^{(1)}$: er, D (cm/in) : ume, $V_s (L)^{(2)}$:	2"				
Time	Pumping Rate (mL/min)	Depth to Water (m/ft)	Drawdown from Initial Water Level ⁽³⁾ (m/ft) cision Required ⁽⁵⁾ :	Temperature ° C ±3 %	Conductivity (mS/cm) ±0.005 or 0.01 ⁽⁶⁾	Turbidity NTU ±10 %	DO (mg/L) ±10 %	pH ±0.1 Units	ORP (mV) ±10 mV	Volume Purged, Vp (L)	No. of Well Screen Volumes Purged ⁽⁴⁾
1220	400	22.41	0	1699	1,583	3.26	(~80	7.42	-44.5		
1225	400	72-41	ଦ	16-92	1-585	3,11	1-78	2.42	-739		
1230	น้อง	22-41	D	16.94	1.609	3.66	1-80	7.41	1724		
1225	400	22-41	0	16.97	1.619	7-84	1.76	क्षा	-72-1		
1240	1100	22-41	<u> </u>	16-95	1 634	2.76	1.82	7.39	-74.4		
1245	400	22-41	0	16.43	1.640	3.01	(68.5	7-39	7110		
1250	U=0	22-41	٥	10-88	1.638	225	185	7-38	-71-6		
											<u>-</u>
			· · · · · · · · · · · · · · · · · · ·								
										_	
				ļ				<u> </u>			<u> </u>

- (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.
- (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r (r=D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r^2)^*L^*$ (2.54) where r and L are in inches
- (3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.
- (4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.
- (5) For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

Parlob 2

GW-38443-062315-JC-024 (

		_									
Project Da	ta:	270FM									
-	Project Name	Oh! Oh!	io River Terminal		Date:-	5/ /1 5	61231	T			
	Ref. No.:		543903-08	038443	Personnel:	Jason Close	KU	7527			
Monitorius	Well Data:						•				-
Wionitoring	•	MW- A									
Va	pour PID (ppm):			Sa	turated Screen L	angth (m/ft):					
	asurement Point				epth to Pump In					-	<u>=</u>
	ell Depth (m/ft)			,	_	er, D (cm/in):	2"		······································	_	<u> </u>
	ell Depth (m/ft).			•	Well Screen Vol					·	<u> </u>
	Sediment (m/ft):				Initial Depth to		12.D-	<u> </u>		L	
<u>.</u>	(-,,		Drawdown	•		(<i>ij</i> ·		,			
	Pumping	Depth to	from Initial		_					Volume	No. of Well
Time	Rate (mL/min)	Water (m/ft)	Water Level ⁽³⁾ (m/ft)	Temperature ° C	Conductivity (mS/cm)	Turbidity NTU	DO (mg/L)	pН	ORP (mV)	Purged, Vp (L)	Screen Volumes Purged ⁽⁴⁾
	(1111)		cision Required (5):	±3 %	±0.005 or 0.01 (6)	±10 %	±10 %	±0.1 Units	±10 mV		
1303	300	27.00									
1310	306	12.00	0.01	19:19	1.727	71202	0.95	7.49	-67-9		
1316	300	22-00	D	(8,00	1.219	>1000	1-80	7.47	-88.6		
1320	300	22.00	0	18.19	1.224	457	2-27	7-49	-88.2		
1325	300	2200	<u>ي</u>	12.28	1-230	323	3.57	7.49	-12.7		
1330		22.01	0.01	18-48	1-242	174	3.81	1-51	-97-2		
1338		7201	0-01	18.55	1247	136	4.05	2-52	-85.8		····
1340		77.00	D- DO	18.53	1-250	100	4,24	754	-92.7		
1345	300	2200	0.0	18.78	1.260	83-3	417	752	-100.8		
(250	300	72.01	0.0(19.11	1.775	70.1	4.19	7-51	-w2.1		
1355)œ	22.01	9-0i	19.96	6299	224	4.23	7.48	-102-7		
7400	300	22.50	0,60	20.27	1-316	147	4.41	7.48	102-1		
1405	3 20	22.01	Octi	20.41	1.3,9	123	475	7.49	-1-2-6		
146	300	12-00	000	2043	1-327	125	47	J. 48	-102.2		

- (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.
- (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r (r=D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r^2)^*L^*$ (2.54) , where r and L are in inches
- (3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.
- (4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.
- (5) For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

Pugul of 2 6W-38443-062365-5C-

			<u>MO</u> 1	NITORING WE	LL RECORD FO	OR LOW-FLC	W PURGIN	<u>'G</u>			
Project Da	ta: Project Name:	COSTEM (Or	<u>.</u> ــــــــــــــــــــــــــــــــ				6123/15				
	Project Name:	70 TO 1 Off	to River Terminal	ls Co.	Date:						
	Ref. No.:		04 3903-08 (38443	Personnel:	Jason Close	KNIGE	<u>/ ئىم ج</u>			
Monitoring	Well Data:	4									
	Well No.:	$MW- \angle$									ļ
· Va	pour PID (ppm):				iturated Screen L					-	
Mea	asurement Point:			D	epth to Pump In	take (m/ft) ⁽¹⁾ :				-	
	ell Depth (m/ft):				Well Diamete		2"			-	
Measured W	ell Depth (m/ft):				Well Screen Volt	ume, $V_s(L)^{(2)}$:				-	
Depth of	Sediment (m/ft):				Initial Depth to	Water (m/ft):	20,00			_	
			Drawdown								
	Pumping Rate	Depth to Water	from Initial Water Level ⁽³⁾	Temperature	Conductivity	Turbidity	DO	pΗ	ORP	Volume Purged, Vp	No. of Well Screen Volumes
Time	(mL/min)	(m/ft)	(m/ft)	°C	(mS/cm)	NTU	(mg/L)	pm	(mV)	(L)	Purged (4)
		Pre	cision Required ⁽⁵⁾ :	±3 %	±0.005 or 0.01 (6)	±10 %	±10 %	±0.1 Units	±10 mV		
1415	300	22.02	20.0	20.37	1320	100	unt	748	-102-2		
1420	1500	22002	0.02	20:53	1.326	98	4:68	7.19	103.9		
1425	300	92006	0.31	20138	6322	82	4.76	3-50	-16476		
1430	30=	22-01	0.41	20.52	しっろひ	91.0	4-72	740	-605.2		
1435	300	1202	ن د د د	14-73	1.303	873	4.86	4/2	-(04(-2		
1440	500	22002	6-02	20.15	1,315	27.2	4.83	9-51	-104.8	· -	
inus	300	2202	0-0	20.69	L 333	86.3	4.77	7.50	-105.5		
1450	300	22.02	500	20,77	1,337	80,5	4,83	7.49	-105.8		
1455	200	22.02	0.02	21,09	1.348	126	48Q	749	-105,3		
1500	300	22.02	0.02	20,25	1.322	140	4.99	7.52	-104.1		
1505		22,02	50.0	20,17	1.318	130	4,92	751	-1043		
150	300	22,		20,42	1.325	122	4.90	7,51	-105.6		

- (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.
- (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = n^*(r^2)^*L$ in mL, where r (r = D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r^2)^*L^*(2.54)^3$, where r and L are in inches
- (3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.
- (4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.
- (5) For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

Page of 2 6W-38443-062315-JC-027(1710)

MONITORING WELL RECORD FOR LOW-FLOW PURGING											
Project Data	ı:	20									
1	Project Name:		io River Termina l	l o Co.	Date	5/23 /15	,				
1	Ref. No.:		-913903-08	-38443	Date:	Jason Close	Kovin	Nusent			
Manitonian	Maria Doda			_ •	-						
Monitoring		MW- 720	<u>`</u>								
Van	our PID (ppm):				aturated Screen L	ength (m/ft):				_	
	surement Point:				Depth to Pump In					-	<u> </u>
Constructed Wel				·		er, D (cm/in):				-	
	I De pth (m/ft):		······································	•	Well Screen Vol	ume, $V_s(L)^{(2)}$:			<u> </u>	=	
	ediment (m/ft):			•	Initial Depth to	J	7,2	.31		<u></u>	
1	· · · · · · · · · · · · · · · · · · ·		Drawdown	•		\\ \\ \\ \\ \					
	Pumping	Depth to	from Initial							Volume	No. of Well
Time	Rate (mL/min)	Water (m/ft)	Water Level ⁽³⁾ (m/ft)	Temperature ° C	Conductivity (mS/cm)	Turbidity NTU	DO (mg/L)	pН	ORP (mV)	Purged, Vp (L)	Screen Volumes Purged ⁽⁴⁾
	(1124 71111)		cision Required (5):	±3 %	±0.005 or 0.01 (6)	±10 %	±10 %	±0.1 Units	±10 mV	(12)	1 300
1518	10 SOU	22.31	<u> </u>			1					
1525	* UC	22-31	Ø	17.05	1.038	71000	2-51	छ.०४	-73.9		
1530	200	22.31	Ø	16.80	0.994	//000_	0.92	7,86	-94.3		
1536	200	22.33	5.02	16.82	0.974	132	0.49	7.87	-106,Z		
1440	500	22.35		16-70	0-950	114	0.85	7.87	-110.5		
ISUT	Q O	22.35	0,04	1/214	0.236	211	0-28	7-34	-112-9		
150	500	22.37	0-04	110 39	0.923	255	0.25	7-83	-1138		
1222	Joo	22-35	Deun	16-73	0-822	249	0-24	7-85	-116-3		
1600	500	22,35	0.044	14.53	0.911	223	0-24	7.85	-418.4		
1605	500	22,35		16,51	0.903	247	0.23	7.81	119.0		
ivio	500	22-35	0.04	16-49	0.816	241	0.23	782	-(12)		
1015	500	22-25	0.54	16.20	0.884	217	0-22	7.83	-120.0		
1620	500	22,55	0,04	16.38	9.883	209	0.23	7.87	-120,4		
1625	500	22-75	0-00	16.34	0.294	179	0.23	7-84	-119.8		
Notes: 1430	500	27,35	OLOU	16-22	0-867	183	0.23	4.86	-120.8		

- (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.
- (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r')^*L$ in mL, where r (r = D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r')^*L^*$ (2.54)³, where r and L are in inches
- (3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.
- (4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.
- (5) For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

Rose 2 2

			<u>MO</u> :	NITORING W	ELL RECORD F	OR LOW-FLO	OW PURGIN	<u>1G</u>			
Project Date		52				_, ,	· 6(231	سی			
	Project Name Ref. No.	: :	io River Termina 043903-08	38.043-76	Date: Personnel:	5/ /15 Jason Close	1 CAVE	5.07			
36				<u> </u>	<u>.</u> (1 02,000				
Monitoring		: MW- 12-0									
Vap	our PID (ppm)			9	Saturated Screen I	ength (m/ft)					
	surement Point		''		Depth to Pump In					-	
Constructed We				•	Well Diamet	er, D (cm/in):	2"		····	.	<u>=</u>
Measured We	ll Depth (m/ft)	:			Well Screen Vol						
Depth of S	ediment (m/ft)	: <u></u>			Initial Depth to	Water (m/ft)	22-31				
Time	Pumping Rate (mL/min)	Depth to Water (m/ft)	Drawdown from Initial Water Level ⁽³⁾ (m/ft)	Temperature ° C	Conductivity (mS/cm)	Turbidity NTU	DO (mg/L)	pН	ORP (mV)	Volume Purged, Vp (L)	No. of Well Screen Volumes Purged ⁽⁴⁾
		Pre	cision Required (5):	±3 %	±0.005 or 0.01 (6)	±10 %	±10 %	±0.1 Units	±10 mV	•	
1635	500	ZZZ,35	0,04	(6-27	ని. కట0	200	0.24	4.85	-12(4		
1640	500	22-75	0.04	ile-41	0.858	236	122	7.85	- 122-5		
wys	500	22-35	الادن	16-28	0.849	199	0.22	7.86	-121.6		
1450	500	22,25	الاستان	16.23	0.845	146	0.21	7,24	-1226	<u> </u>	
1855	500	22-35	0.6M	16.22	0.842	135	0.22	7.86	1225		
1705	500 500	22.35	0.04	16.09	0.838	186	0,24		-122,6	<u> </u>	
1703	300	23,3	020	10.05	9.33	Z38	0.	オードく	421.0		
					<u> </u>			_			1
								_			1
		-						_			
lotes:							the reall battons				

- (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.
- (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r')^*L$ in mL, where r (r = D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r')^*L^*$ (2.54) 3 , where r and L are in inches
- (3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.
- (4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.
- (5) For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

MONITORING WELL RECORD FOR LOW-FLOW PURGING Project Data: Project Name: SDD - DP&L Date: 6/24/2015 Ref. No.: 038443-70-15 Personnel: Jason Close Kevin Nugent Monitoring Well Data: Well No.: ZZ Vapour PID (ppm): Saturated Screen Length (m/ft): Depth to Pump Intake (m/ft)(1): Measurement Point: Well Diameter, D (cm/in): Constructed Well Depth (m/ft): Well Screen Volume, V_s (L)⁽²⁾: Measured Well Depth (m/ft): Depth of Sediment (m/ft): Initial Depth to Water (m/ft): Drawdown Depth to from Initial Volume No. of Well Pumping Water Level " pHWater DOORPScreen Volumes Rate Temperature Conductivity Turbidity Purged, Vp "C Purged " (mL/min) (mS/cm)NTU (mV)Time (m/ft)(m/ft) (mg/L)(L) Precision Required (b): ±3 % ± 0.005 or 0.01±10 % ±10 % ±0.1 Units $\pm 10 \, mV$ 200 *2*3. 9.15 0 875 71000 700.6 200 71000 107,4 200 19.02 0,892 0.38 - Ol -1000 19.20 0. 875 200 D. 39 100-7 0455 27,50 14.23 200 0, 570 0.46 -106.7 70,00 ت زن ن برس 200 19,23 0, 876 00 73.50 71000 17-41 7-14 -105.9 0.01 0.35 305 -163,7 19-21 7.13 **1_**00 22.50 0.874 71000 0.01 0-39 19-09 7-12 1010 73.50 0-873 71000 -104.0 010] ت درم 0.39 200 0,31 9.51 0. 878 71000 2.10 104-0 13 30 1015 n,230 1250 0.35 2.11 والتوك アレション 703.8 13.50 1020 0001 19.71 0.42 7.29 -99-0 1025 200 2350 D- 681 71000 n-06 0.31 7.60 150 1290 0.889 1034 0,01 70000 -1031 a.892 0.01 71000 1035 الانكرا 9,0,54 0.30 7.01 <u>-10474</u> 7.24 040 71000 0001 0,992 ~103-4 200 10.00 71000 にいご 200 0-29 10.0 0.094 -1016 23,00 0.07

⁽¹⁾ The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.

⁽²⁾ The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r (r=D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r^2)^*L$ in mL, where r and L are in inches

⁽³⁾ The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min-

⁽⁴⁾ Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be

6W-38443-062415-029(1708)

MONITORING WELL RECORD FOR LOW-FLOW PURGING V O30(12/5)							
Project Data:							
Project Name: SDD - DP&L	Date: 6/24/2015						
Ref. No.: 038443-70-15	Personnel: Jason Close						
	Kevin Nugent						
Monitoring Well Data:	•						
Well No.: <u>6W - 5</u>							
Vapour PID (ppm):	Saturated Screen Length (m/ft):						
Measurement Point:	Depth to Pump Intake (m/ft) ⁽¹⁾ :						
Constructed Well Depth (m/ft):	Well Diameter, D (cm/in):						
Measured Well Depth (m/ft):	Well Screen Volume, V _s (L) ¹²⁾ :						
Depth of Sediment (m/ft):	Initial Depth to Water (m/ft): 2 1,	75					
Drawdown							
Pumping Depth to from Initial Rate Water Water Level™	The state of the s	Volume No. of Well					
Rate Water Water Level *** Time (mL/min) (m/ft) (m/ft)	Temperature Conductivity Turbidity DO $^{\circ}C$ (mS/cm) NTU (mg/L)	pH ORP Purged, Vp Screen Volumes (mV) (L) Purged "					
Precision Required (3);	±3 % ±0.005 or 0.01 (6) ±10 % ±10 %	±0.1 Units ±10 mV					
1110 300 21.79 -							
	1-20 1112 20 11	7.11 -94.3					
1115 300 21,35 6	7.39 1.142 27.8 0.45						
1120 300 21.75	1692 1204 11.5 0.37	7.11 -94,0					
1125 300 2145 0	16,03 1,230 4,83 0,20	7.11 -94.1					
1130 300 21.76 0.01	10.74 1,253 2,53 0.25	7.11 -93.0					
1135 300 21.75 0.0	122 1.296 3.07 0.22	7.10 -92.9					
1146 300 71026 2.01	17.44 1.317 2-45 0.27	4.25 -13.0					
1145 300 21.77 0.0Z	17.34 1324 1.77 0.22	7.09 -92.5					
1156 200 21.25 0	12.46 1.376 1.20 0.22	1-03 -91-9					
1155 300 1177 0-02		4.08 -91.1					
1200 300 21-26 0.01	<u> </u>	7-07 -90.8					
1205 300	1000						
1215 300							

Motes

- (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.
- (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r (r = D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r^2)^*L^*$ (2.54) 3 , where r and L are in inches
- (3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.
- (4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be

Attachment 2 - Data Validation Memoranda

9033 Meridian Way, West Chester, OH 45069 Telephone: (513) 942-4750 Fax: (513) 942-8585

www.CRAworld.com

MEMORANDUM

To: Julian Hayward, Valerie Chan Ref. No.: 038443-70

FROM: Angela Bown/cs/23-NF DATE: June 9, 2015

RE: Analytical Results and Full Validation

Spring 2015 Groundwater Sampling South Dayton Dump and Landfill

Illinois Tool Works, Inc.

Moraine, Ohio May 2015

1.0 Introduction

The following document details a validation of analytical results for water samples collected in support of the Spring 2015 Groundwater Sampling event at the South Dayton Dump and Landfill Site during May 2015. Samples were submitted to TestAmerica Laboratories, Inc. (TestAmerica) located in North Canton, Ohio. A sample collection and analysis summary is presented in Table 1. The validated analytical results are summarized in Table 2. A summary of the analytical methodology is presented in Table 3.

Full Contract Laboratory Program (CLP) equivalent raw data deliverables were provided by the laboratory. Evaluation of the data was based on information obtained from the finished data sheets, raw data, chain of custody forms, calibration data, blank data, recovery data from surrogate spikes, laboratory control samples (LCS), matrix spike (MS) samples, and field quality assurance/quality control (QA/QC) samples. The assessment of analytical and in-house data included checks for data consistency (by observing comparability of duplicate analyses), adherence to accuracy and precision criteria, and transmittal errors.

The QA/QC criteria by which these data have been assessed are outlined in the analytical methods referenced in Table 3 and applicable guidance from the documents entitled:

- i) "Quality Assurance Project Plan-Version 1", November 2014
- ii) "USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review", USEPA 540-R-08-01, June 2008

Item ii) will subsequently be referred to as the "Guidelines" in this Memorandum.

CRA MEMORANDUM

2.0 Sample Holding Time and Preservation

The sample holding time criteria and sample preservation requirements for the analyses are summarized in the method. Sample chain of custody documents and analytical reports were used to determine sample holding times. All samples were analyzed within the required holding times with the exception of one sample re-analysis. Table 4 presents the qualified sample result.

All samples were properly preserved, delivered on ice, and stored by the laboratory at the required temperature (0-6°C).

3.0 Gas Chromatography/Mass Spectrometer (GC/MS) – Tuning and Mass Calibration (Instrument Performance Check)

Prior to volatile organic compound (VOC) analysis, GC/MS instrumentation is tuned to ensure optimization over the mass range of interest. To evaluate instrument tuning, methods require the analysis of the specific tuning compound bromofluorobenzene (BFB). The resulting spectra must meet the criteria cited in the method before analysis is initiated. Analysis of the tuning compound must then be repeated every 12 hours throughout sample analysis to ensure the continued optimization of the instrument.

The tuning compound was analyzed at the required frequency throughout VOC analysis periods. All tuning criteria were met, indicating that proper optimization of the instrumentation was achieved.

4.0 Initial Calibration

GC/MS

To quantify VOCs of interest in samples, calibration of the GC/MS over a specific concentration range must be performed. Initially, a five-point calibration curve containing all compounds of interest is analyzed to characterize instrument response for each analyte over a specific concentration range. Linearity of the calibration curve and instrument sensitivity are evaluated against the following criteria:

- i. All relative response factors (RRFs) must be greater than or equal to 0.05 (0.01 for compounds that exhibit poor response)
- ii. The percent relative standard deviation (RSD) values must not exceed 20.0 percent (40.0 percent for compounds that exhibit poor response) or a minimum correlation coefficient (R) and minimum coefficient of determination (R²) of 0.99 if linear and quadratic equation calibration curves, respectively, are used

The initial calibration data for VOCs were reviewed. All compounds met the above criteria for sensitivity and linearity.

CRA MEMORANDUM

Page 3

5.0 Continuing Calibration

GC/MS

To ensure that instrument calibration for VOC analyses is acceptable throughout the sample analysis period, continuing calibration standards must be analyzed and compared to the initial calibration curve every 12 hours.

The following criteria were employed to evaluate continuing calibration data:

- i. All RRF values must be greater than or equal to 0.05 (0.01 for compounds that exhibit poor response)
- ii. Percent difference (%D) values must not exceed 25 percent (40 percent for compounds that exhibit poor response)

Calibration standards were analyzed at the required frequency, and the results met the above criteria for instrument sensitivity and stability with the exception of acetone and bromomethane. Table 5 presents the qualified sample results.

6.0 Laboratory Blank Analyses

Method blanks are prepared from a purified matrix and analyzed with investigative samples to determine the existence and magnitude of sample contamination introduced during the analytical procedures.

For this study, laboratory method blanks were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

Methylene chloride and acetone were detected in several method blanks. Sample results that were similar in concentration to the method blanks were qualified as non-detect due to potential laboratory contamination. Table 6 presents the qualified sample results. All remaining method blank results were non-detect.

7.0 Surrogate Spike Recoveries

In accordance with the methods employed, all samples, blanks, and QC samples analyzed for organics are spiked with surrogate compounds prior to sample analysis. Surrogate recoveries provide a means to evaluate the effects of laboratory performance on individual sample matrices.

All samples submitted for VOC determinations were spiked with the appropriate number of surrogate compounds prior to sample analysis.

Surrogate recoveries were assessed against laboratory control limits. All surrogate recoveries met the laboratory criteria.

CRA MEMORANDUM

8.0 Internal Standards (IS) Analyses

IS data were evaluated for all VOC sample analyses.

To ensure that changes in the GC/MS sensitivity and response do not affect sample analysis results IS compounds are added to each sample prior to analysis. All results are then calculated as a ratio of the IS responses.

The sample IS results were evaluated against the following criteria:

- i. The retention time of the IS must not vary more than ±30 seconds from the associated calibration standard
- ii. IS area counts must not vary by more than a factor of two (-50 percent to +100 percent) from the associated calibration standard

All organic IS recoveries and retention times met the above criteria.

9.0 Laboratory Control Sample Analyses

LCS are prepared and analyzed as samples to assess the analytical efficiencies of the methods employed, independent of sample matrix effects.

For this study, LCS were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

The LCS contained all compounds of interest. All LCS recoveries were within the laboratory control limits, demonstrating acceptable analytical accuracy.

10.0 Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

To evaluate the effects of sample matrices on the extraction or digestion process, measurement procedures, and accuracy of a particular analysis, samples are spiked with a known concentration of the analyte of concern and analyzed as MS/MSD samples. The RPD between the MS and MSD is used to assess analytical precision. If the original sample concentration is significantly greater than the spike concentration, the recovery is not assessed.

Non-detect sample results associated with high MS/MSD recoveries or RPDs were not qualified. Non-detect data would not be impacted by the indicated high bias/variability.

CRA MEMORANDUM

Page 5

If only the MS or MSD recovery was outside of control limits, no qualification of the data was performed based on the acceptable recovery of the companion spike and the acceptable RPD.

MS/MSD analyses were performed as specified in Table 1.

The MS/MSD samples were spiked with all compounds of interest. All percent recoveries and RPD values were within the laboratory control limits, demonstrating acceptable analytical accuracy and precision.

11.0 Field QA/QC Samples

The field QA/QC consisted of 2 trip blank samples, 2 rinse blank samples, and 2 field duplicate sample sets.

Trip Blank Sample Analysis

To evaluate contamination from sample collection, transportation, storage, and analytical activities, 2 trip blanks were submitted to the laboratory for VOC analysis. Methylene chloride was detected in the trip blanks. All potentially impacted sample results were previously qualified for method blank contamination and did not required further qualification.

Rinse Blank Sample Analysis

To assess field decontamination procedures, ambient conditions at the site, and cleanliness of sample containers, 2 rinse blanks were submitted for analysis, as identified in Table 1. 2-Butanone and chloroform were detected in the rinse blank samples. Associated sample results that were similar in concentration to the rinse blanks were qualified as non-detect in Table 7. All remaining results were non-detect for the analytes of interest.

Field Duplicate Sample Analysis

To assess the analytical and sampling protocol precision, 2 field duplicate sample sets were collected and submitted "blind" to the laboratory, as specified in Table 1. The RPDs associated with these duplicate samples must be less than 50 percent for water samples. If the reported concentration in either the investigative sample or its duplicate is less than five times the practical quantitation limit (PQL), the evaluation criteria is one times the PQL value for water samples.

All field duplicate results were within acceptable agreement, demonstrating acceptable sampling and analytical precision.

12.0 Analyte Reporting

The laboratory reported detected results down to the laboratory's method detection limit (MDL) for each analyte. Positive analyte detections less than the PQL but greater than the MDL were qualified as

CRA MEMORANDUM

Page 6

estimated (J) in Table 2 unless qualified otherwise in this memorandum. Non-detect results were presented as non-detect at the PQL in Table 2.

13.0 Target Compound Identification

To minimize erroneous compound identification during organic analyses, qualitative criteria including compound retention time and mass spectra were evaluated according to the identification criteria established by the methods. The samples identified in Table 1 were reviewed. The organic compounds reported adhered to the specified identification criteria.

14.0 Conclusion

Based on the assessment detailed in the foregoing, the data summarized in Table 2 are acceptable with the specific qualifications noted herein.

TABLE 1

SAMPLE COLLECTION AND ANALYSIS SUMMARY SPRING 2015 GROUNDWATER SAMPLING SOUTH DAYTON DUMP AND LANDFILL ILLINOIS TOOL WORKS, INC. MORAINE, OHIO MAY 2015

					Analysis/Parameters	
			Collection	Collection		
Sample Identification	Location	Matrix	Date	Time	TCL VOCs	Comments
			(mm/dd/yyyy)	(hr:min)		
TestAmerica Job Number: 240-50787-1						
GW-38443-051115-GL-001	MW-204	WG	05/11/2015	12:40:00	Χ	
GW-38443-051115-GL-002	MW-102	WG	05/11/2015	14:35:00	X	
GW-38443-051115-GL-003	MW-102	WG	05/11/2015	14:40:00	X	FD(GW-38443-051115-GL-002)
GW-38443-051115-GL-004	MW-103	WG	05/11/2015	15:55:00	X	
GW-38443-051115-GL-005	Rinse Blank	WGQ	05/11/2015	16:40:00	X	
GW-38443-051215-GL-006	MW-212	WG	05/12/2015	09:45:00	X	
GW-38443-051215-GL-007	MW-202	WG	05/12/2015	11:05:00	X	
GW-38443-051215-GL-008	MW-209	WG	05/12/2015	12:10:00	X	
GW-38443-051215-GL-009	MW-222A	WG	05/12/2015	14:15:00	X	
GW-38443-051215-GL-010	MW-222	WG	05/12/2015	15:45:00	X	
GW-38443-051315-AS-014	MW-215A	WG	05/13/2015	13:05:00	Х	MS/MSD
GW-38443-051315-AS-015	MW-215B	WG	05/13/2015	14:10:00	Х	
GW-38443-051315-AS-016	MW-209A	WG	05/13/2015	15:40:00	Х	
GW-38443-051315-AS-017	Rinse Blank	WGQ	05/13/2015	16:05:00	X	
GW-38443-051315-GL-011	MW-203	WG	05/13/2015	08:45:00	X	
GW-38443-051315-GL-012	MW-101A	WG	05/13/2015	09:35:00	Х	
GW-38443-051315-GL-013	MW-219	WG	05/13/2015	10:55:00	X	
GW-38443-051415-AS-018	MW-229	WG	05/14/2015	15:25:00	X	
GW-38443-051415-AS-019	MW-229	WG	05/14/2015	15:30:00	X	FD(GW-38443-051415-AS-018)
GW-38443-051415-AS-020	MW-216	WG	05/14/2015	16:35:00	X	,
TRIPBLANK-051415-001	Trip Blank	WGQ	05/14/2015	00:00:00	X	
TestAmerica Job Number: 240-50825-1	•					
GW-38443-051515-AS-021	MW-210A	WG	05/15/2015	09:05:00	Χ	
GW-38443-051515-AS-022	MW-210B	WG	05/15/2015	10:30:00	Χ	
GW-38443-051515-AS-023	MW-210	WG	05/15/2015	11:20:00	Χ	
GW-38443-051515-AS-024	MW-201	WG	05/15/2015	13:00:00	Χ	
TRIPBLANK-051515-002	Trip Blank	WGQ	05/15/2015	00:00:00	Χ	

Notes:

FD() - Field Duplicate of the Sample in Parentheses

MS/MSD - Matrix Spike/Matrix Spike Duplicate

TCL - Target Compound List

VOCs - Volatile Organic Compounds

WG - Groundwater

WGQ - Groundwater Quality Control Sample

TABLE 2 Page 1 of 12

GROUNDWATER SAMPLING ANALYTICAL RESULTS SPRING 2015 GROUNDWATER SAMPLING SOUTH DAYTON DUMP AND LANDFILL ILLINOIS TOOL WORKS, INC. MORAINE, OHIO MAY 2015

OU Aquife Sample Location Sample ID Date	r : :	OU1 Lower Aquifer MW-209A GW-38443-051315-AS-016 5/13/2015	OU1 Lower Aquifer MW-210A GW-38443-051515-AS-021 5/15/2015	OU1 Lower Aquifer MW-210B GW-38443-051515-AS-022 5/15/2015
Sampling Company:		CRA	CRA	CRA
Parameters	Units			
Volatiles				
1,1,1-Trichloroethane	μg/L	1.0 U	1.0 U	14 U
1,1,2,2-Tetrachloroethane	μg/L	1.0 U	1.0 U	14 U
1,1,2-Trichloroethane	μg/L	1.0 U	1.0 U	14 U
1,1-Dichloroethane	μg/L	1.0 U	1.0 U	14 U
1,1-Dichloroethene	μg/L	1.0 U	1.0 U	14 U
1,2,4-Trichlorobenzene	μg/L	1.0 U	1.0 U	14 U
1,2-Dibromo-3-chloropropane (DBCP)	μg/L	2.0 U	2.0 U	29 U
1,2-Dibromoethane (Ethylene dibromide)	μg/L	1.0 U	1.0 U	14 U
1,2-Dichlorobenzene	μg/L	1.0 U	1.0 U	14 U
1,2-Dichloroethane	μg/L	1.0 U	1.0 U	14 U
1,2-Dichloropropane	μg/L	1.0 U	1.0 U	14 U
1,3-Dichlorobenzene	μg/L	1.0 U	1.0 U	14 U
1,4-Dichlorobenzene	μg/L	1.0 U	1.0 U	14 U
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	10 U	10 U	140 U
2-Hexanone	μg/L	10 U	10 U	140 U
4-Methyl-2-pentanone (Methyl isobutyl ketone) (MIBK)	μg/L	10 U	10 U	140 U
Acetone	μg/L	10 U	10 U	140 U
Benzene	μg/L	1.0 U	1.0 U	390
Bromodichloromethane	μg/L	1.0 U	1.0 U	14 U
Bromoform	μg/L	1.0 U	1.0 U	14 U
Bromomethane (Methyl bromide)	μg/L	1.0 UJ	1.0 U	14 U
Carbon disulfide	μg/L	1.0 U	1.0 U	14 U
Carbon tetrachloride	μg/L	1.0 U	1.0 U	14 U
Chlorobenzene	μg/L	1.0 U	1.0 U	14 U
Chloroethane	μg/L	1.0 U	1.0 U	14 U
Chloroform (Trichloromethane)	μg/L	1.0 U	1.0 U	14 U
Chloromethane (Methyl chloride)	μg/L	1.0 U	1.0 U	14 U
cis-1,2-Dichloroethene	μg/L	1.9	1.0 U	14 U
cis-1,3-Dichloropropene	μg/L	1.0 U	1.0 U	14 U
Cyclohexane	μg/L	1.0 U	1.0 U	14 U
Dibromochloromethane	μg/L	1.0 U	1.0 U	14 U
Dichlorodifluoromethane (CFC-12)	μg/L	1.0 U	1.0 U	14 U

TABLE 2 Page 2 of 12

GROUNDWATER SAMPLING ANALYTICAL RESULTS SPRING 2015 GROUNDWATER SAMPLING SOUTH DAYTON DUMP AND LANDFILL ILLINOIS TOOL WORKS, INC. MORAINE, OHIO MAY 2015

	OU Aquifer Sample Location: Sample ID: Date:	OU1 Lower Aquifer MW-209A GW-38443-051315-AS-016 5/13/2015	OU1 Lower Aquifer MW-210A GW-38443-051515-AS-021 5/15/2015	OU1 Lower Aquifer MW-210B GW-38443-051515-AS-022 5/15/2015
Sampling Company:		CRA	CRA	CRA
Parameters	Units			
Ethylbenzene	μg/L	1.0 U	1.0 U	14 U
Isopropyl benzene	μg/L	1.0 U	1.0 U	14 U
Methyl acetate	μg/L	10 U	10 U	140 U
Methyl cyclohexane	μg/L	1.0 U	1.0 U	14 U
Methyl tert butyl ether (MTBE)	μg/L	1.0 U	1.0 U	14 U
Methylene chloride	μg/L	1.0 U	1.0 U	14 U
Styrene	μg/L	1.0 U	1.0 U	14 U
Tetrachloroethene	μg/L	1.0 U	1.0 U	14 U
Toluene	μg/L	1.0 U	1.0 U	14 U
trans-1,2-Dichloroethene	μg/L	1.0 U	1.0 U	14 U
trans-1,3-Dichloropropene	μg/L	1.0 U	1.0 U	14 U
Trichloroethene	μg/L	1.0 U	1.0 U	14 U
Trichlorofluoromethane (CFC-11)	μg/L	1.0 U	1.0 U	14 U
Trifluorotrichloroethane (Freon 113)	μg/L	1.0 U	1.0 U	14 U
Vinyl chloride	μg/L	9.3	32	14 U
Xylenes (total)	μg/L	2.0 U	2.0 U	29 U

Notes:

U - Not detected at the associated reporting limit

J - Estimated concentration

UJ - Not detected; associated reporting limit is estimated

TABLE 2 Page 3 of 12

GROUNDWATER SAMPLING ANALYTICAL RESULTS SPRING 2015 GROUNDWATER SAMPLING SOUTH DAYTON DUMP AND LANDFILL ILLINOIS TOOL WORKS, INC. MORAINE, OHIO MAY 2015

OU Aquifer Sample Location: Sample ID: Date:		OU1 Lower Aquifer MW-215B GW-38443-051315-AS-015 5/13/2015	OU1 Lower Aquifer MW-216 GW-38443-051415-AS-020 5/14/2015	OU1 Upper Aquifer MW-101A GW-38443-051315-GL-012 5/13/2015	OU1 Upper Aquifer MW-202 GW-38443-051215-GL-007 5/12/2015
Sampling Company:		CRA	CRA	CRA	CRA
Parameters	Units				
Volatiles					
1,1,1-Trichloroethane	μg/L	1.7 U	17 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	μg/L	1.7 U	17 U	1.0 U	1.0 U
1,1,2-Trichloroethane	μg/L	1.7 U	17 U	1.0 U	1.0 U
1,1-Dichloroethane	μg/L	1.2 J	17 U	0.44 J	1.0 U
1,1-Dichloroethene	μg/L	1.7 U	17 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	μg/L	1.7 U	17 U	1.0 U	1.0 U
1,2-Dibromo-3-chloropropane (DBCP)	μg/L	3.3 U	33 U	2.0 U	2.0 U
1,2-Dibromoethane (Ethylene dibromide)	μg/L	1.7 U	17 U	1.0 U	1.0 U
1,2-Dichlorobenzene	μg/L	1.7 U	17 U	1.0 U	1.0 U
1,2-Dichloroethane	μg/L	1.7 U	17 U	1.0 U	1.0 U
1,2-Dichloropropane	μg/L	1.7 U	17 U	1.0 U	1.0 U
1,3-Dichlorobenzene	μg/L	1.7 U	17 U	1.0 U	1.0 U
1,4-Dichlorobenzene	μg/L	1.7 U	17 U	1.0 U	1.0 U
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	17 U	170 U	10 U	10 U
2-Hexanone	μg/L	17 U	170 U	10 U	10 U
4-Methyl-2-pentanone (Methyl isobutyl ketone) (MIBK)	μg/L	17 U	170 U	10 U	10 U
Acetone	μg/L	17 UJ	170 UJ	10 U	10 U
Benzene	μg/L	1.7 U	17 U	1.0 U	1.0 U
Bromodichloromethane	μg/L	1.7 U	17 U	1.0 U	1.0 U
Bromoform	μg/L	1.7 U	17 U	1.0 U	1.0 U
Bromomethane (Methyl bromide)	μg/L	1.7 U	17 U	1.0 UJ	1.0 UJ
Carbon disulfide	μg/L	1.7 U	17 U	1.0 U	1.0 U
Carbon tetrachloride	μg/L	1.7 U	17 U	1.0 U	1.0 U
Chlorobenzene	μg/L	1.7 U	17 U	1.0 U	1.0 U
Chloroethane	μg/L	1.7 U	17 U	1.0 U	1.0 U
Chloroform (Trichloromethane)	μg/L	1.7 U	17 U	1.0 U	1.0 U
Chloromethane (Methyl chloride)	μg/L	1.7 U	17 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	μg/L	35	480	1.8	1.0 U
cis-1,3-Dichloropropene	μg/L	1.7 U	17 U	1.0 U	1.0 U
Cyclohexane	μg/L	1.7 U	17 U	1.0 U	1.0 U
Dibromochloromethane	μg/L	1.7 U	17 U	1.0 U	1.0 U
Dichlorodifluoromethane (CFC-12)	μg/L	1.7 U	17 U	1.0 U	1.0 U

TABLE 2 Page 4 of 12

GROUNDWATER SAMPLING ANALYTICAL RESULTS SPRING 2015 GROUNDWATER SAMPLING SOUTH DAYTON DUMP AND LANDFILL ILLINOIS TOOL WORKS, INC. MORAINE, OHIO MAY 2015

	OU Aquifer Sample Location: Sample ID: Date:	OU1 Lower Aquifer MW-215B GW-38443-051315-AS-015 5/13/2015	OU1 Lower Aquifer MW-216 GW-38443-051415-AS-020 5/14/2015	OU1 Upper Aquifer MW-101A GW-38443-051315-GL-012 5/13/2015	OU1 Upper Aquifer MW-202 GW-38443-051215-GL-007 5/12/2015
Sampling Company:		CRA	CRA	CRA	CRA
Parameters	Units				
Ethylbenzene	μg/L	1.7 U	17 U	1.0 U	1.0 U
Isopropyl benzene	μg/L	1.7 U	17 U	1.0 U	1.0 U
Methyl acetate	μg/L	17 U	170 U	10 U	10 U
Methyl cyclohexane	μg/L	1.7 U	17 U	1.0 U	1.0 U
Methyl tert butyl ether (MTBE)	μg/L	1.7 U	17 U	1.0 U	1.0 U
Methylene chloride	μg/L	1.7 U	17 U	1.0 U	1.0 U
Styrene	μg/L	1.7 U	17 U	1.0 U	1.0 U
Tetrachloroethene	μg/L	1.7 U	17 U	1.0 U	1.0 U
Toluene	μg/L	1.7 U	17 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	μg/L	1.7 U	17 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	μg/L	1.7 U	17 U	1.0 U	1.0 U
Trichloroethene	μg/L	1.7 U	17 U	1.0 U	2.3
Trichlorofluoromethane (CFC-11)	μg/L	1.7 U	17 U	1.0 U	1.0 U
Trifluorotrichloroethane (Freon 113)	μg/L	1.7 U	17 U	1.0 U	1.0 U
Vinyl chloride	μg/L	5.4	350	1.7	1.0 U
Xylenes (total)	μg/L	3.3 U	33 U	2.0 U	2.0 U

Notes:

U - Not detected at the associated reporting limit

J - Estimated concentration

UJ - Not detected; associated reporting limit is estimated

TABLE 2 Page 5 of 12

GROUNDWATER SAMPLING ANALYTICAL RESULTS SPRING 2015 GROUNDWATER SAMPLING SOUTH DAYTON DUMP AND LANDFILL ILLINOIS TOOL WORKS, INC. MORAINE, OHIO MAY 2015

OU Aquifer Sample Location: Sample ID:	•	OU1 Upper Aquifer MW-203 GW-38443-051315-GL-011	OU1 Upper Aquifer MW-204 GW-38443-051115-GL-001	OU1 Upper Aquifer MW-209 GW-38443-051215-GL-008	OU1 Upper Aquifer MW-210 GW-38443-051515-AS-023
Date:		5/13/2015	5/11/2015	5/12/2015	5/15/2015
Sampling Company:		CRA	CRA	CRA	CRA
Parameters	Units				
Volatiles					
1,1,1-Trichloroethane	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
1,1,2,2-Tetrachloroethane	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
1,1,2-Trichloroethane	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
1,1-Dichloroethane	μg/L	0.32 J	1.0 U	1.0 U	2.5 U
1,1-Dichloroethene	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
1,2,4-Trichlorobenzene	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
1,2-Dibromo-3-chloropropane (DBCP)	μg/L	2.0 U	2.0 U	2.0 U	5.0 U
1,2-Dibromoethane (Ethylene dibromide)	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
1,2-Dichlorobenzene	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
1,2-Dichloroethane	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
1,2-Dichloropropane	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
1,3-Dichlorobenzene	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
1,4-Dichlorobenzene	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	10 U	10 U	10 U	25 U
2-Hexanone	μg/L	10 U	10 U	10 U	25 U
4-Methyl-2-pentanone (Methyl isobutyl ketone) (MIBK)	μg/L	10 U	10 U	10 U	25 U
Acetone	μg/L	10 U	10 U	10 U	25 U
Benzene	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
Bromodichloromethane	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
Bromoform	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
Bromomethane (Methyl bromide)	μg/L	1.0 UJ	1.0 UJ	1.0 UJ	2.5 U
Carbon disulfide	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
Carbon tetrachloride	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
Chlorobenzene	μg/L	1.4	0.31 J	1.0 U	2.5 U
Chloroethane	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
Chloroform (Trichloromethane)	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
Chloromethane (Methyl chloride)	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
cis-1,2-Dichloroethene	μg/L	5.0	1.0 U	1.0 U	14
cis-1,3-Dichloropropene	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
Cyclohexane	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
Dibromochloromethane	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
Dichlorodifluoromethane (CFC-12)	μg/L	1.0 U	1.0 U	1.0 U	2.5 U

TABLE 2 Page 6 of 12

GROUNDWATER SAMPLING ANALYTICAL RESULTS SPRING 2015 GROUNDWATER SAMPLING SOUTH DAYTON DUMP AND LANDFILL ILLINOIS TOOL WORKS, INC. MORAINE, OHIO MAY 2015

	OU Aquifer Sample Location: Sample ID: Date:	OU1 Upper Aquifer MW-203 GW-38443-051315-GL-011 5/13/2015	OU1 Upper Aquifer MW-204 GW-38443-051115-GL-001 5/11/2015	OU1 Upper Aquifer MW-209 GW-38443-051215-GL-008 5/12/2015	OU1 Upper Aquifer MW-210 GW-38443-051515-AS-023 5/15/2015
Sampling Company:		CRA	CRA	CRA	CRA
Parameters	Units				
Ethylbenzene	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
Isopropyl benzene	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
Methyl acetate	μg/L	10 U	10 U	10 U	25 U
Methyl cyclohexane	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
Methyl tert butyl ether (MTBE)	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
Methylene chloride	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
Styrene	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
Tetrachloroethene	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
Toluene	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
trans-1,2-Dichloroethene	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
trans-1,3-Dichloropropene	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
Trichloroethene	μg/L	1.1	1.0 U	1.0 U	78
Trichlorofluoromethane (CFC-11)	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
Trifluorotrichloroethane (Freon 113)	μg/L	1.0 U	1.0 U	1.0 U	2.5 U
Vinyl chloride	μg/L	1.6	1.0 U	1.0	2.5 U
Xylenes (total)	μg/L	2.0 U	2.0 U	2.0 U	5.0 U

Notes:

U - Not detected at the associated reporting limit

J - Estimated concentration

UJ - Not detected; associated reporting limit is estimated

TABLE 2 Page 7 of 12

GROUNDWATER SAMPLING ANALYTICAL RESULTS SPRING 2015 GROUNDWATER SAMPLING SOUTH DAYTON DUMP AND LANDFILL ILLINOIS TOOL WORKS, INC. MORAINE, OHIO MAY 2015

OU Aquifer Sample Location: Sample ID: Date:		OU1 Upper Aquifer MW-212 GW-38443-051215-GL-006 5/12/2015	OU1 Upper Aquifer MW-215A GW-38443-051315-AS-014 5/13/2015	OU1 Upper Aquifer MW-219 GW-38443-051315-GL-013 5/13/2015	OU1 Upper Aquifer MW-229 GW-38443-051415-AS-018 5/14/2015
Sampling Company:		CRA	CRA	CRA	CRA
Parameters	Units				
Volatiles					
1,1,1-Trichloroethane	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
1,1,2,2-Tetrachloroethane	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
1,1,2-Trichloroethane	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
1,1-Dichloroethane	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
1,1-Dichloroethene	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
1,2,4-Trichlorobenzene	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
1,2-Dibromo-3-chloropropane (DBCP)	μg/L	2.0 U	2.0 U	2.0 U	8.0 U
1,2-Dibromoethane (Ethylene dibromide)	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
1,2-Dichlorobenzene	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
1,2-Dichloroethane	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
1,2-Dichloropropane	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
1,3-Dichlorobenzene	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
1,4-Dichlorobenzene	μg/L	1.0 U	0.37 J	1.0 U	4.0 U
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	10 U	10 U	10 U	40 U
2-Hexanone	μg/L	10 U	10 U	10 U	40 U
4-Methyl-2-pentanone (Methyl isobutyl ketone) (MIBK)	μg/L	10 U	10 U	10 U	40 U
Acetone	μg/L	10 U	10 U	10 U	40 U
Benzene	μg/L	1.0 U	2.8	1.0 U	4.0 U
Bromodichloromethane	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
Bromoform	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
Bromomethane (Methyl bromide)	μg/L	1.0 UJ	1.0 UJ	1.0 UJ	4.0 UJ
Carbon disulfide	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
Carbon tetrachloride	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
Chlorobenzene	μg/L	1.0 U	1.7	1.0 U	4.0 U
Chloroethane	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
Chloroform (Trichloromethane)	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
Chloromethane (Methyl chloride)	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
cis-1,2-Dichloroethene	μg/L	1.0 U	0.93 J	1.0 U	9.8
cis-1,3-Dichloropropene	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
Cyclohexane	μg/L	1.0 U	0.58 J	1.0 U	4.0 U
, Dibromochloromethane	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
Dichlorodifluoromethane (CFC-12)	μg/L	1.0 U	1.0 U	1.0 U	4.0 U

TABLE 2 Page 8 of 12

GROUNDWATER SAMPLING ANALYTICAL RESULTS SPRING 2015 GROUNDWATER SAMPLING SOUTH DAYTON DUMP AND LANDFILL ILLINOIS TOOL WORKS, INC. MORAINE, OHIO MAY 2015

	OU Aquifer Sample Location: Sample ID: Date:	OU1 Upper Aquifer MW-212 GW-38443-051215-GL-006 5/12/2015	OU1 Upper Aquifer MW-215A GW-38443-051315-AS-014 5/13/2015	OU1 Upper Aquifer MW-219 GW-38443-051315-GL-013 5/13/2015	OU1 Upper Aquifer MW-229 GW-38443-051415-AS-018 5/14/2015
Sampling Company:		CRA	CRA	CRA	CRA
Parameters	Units				
Ethylbenzene	μg/L	1.0 U	0.48 J	1.0 U	4.0 U
Isopropyl benzene	μg/L	1.0 U	0.71 J	1.0 U	4.0 U
Methyl acetate	μg/L	10 U	10 U	10 U	40 U
Methyl cyclohexane	μg/L	1.0 U	1.0 U	1.8	4.0 U
Methyl tert butyl ether (MTBE)	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
Methylene chloride	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
Styrene	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
Tetrachloroethene	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
Toluene	μg/L	1.0 U	1.0 U	0.25 J	4.0 U
trans-1,2-Dichloroethene	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
trans-1,3-Dichloropropene	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
Trichloroethene	μg/L	1.0 U	1.0 U	1.0 U	85
Trichlorofluoromethane (CFC-11)	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
Trifluorotrichloroethane (Freon 113)	μg/L	1.0 U	1.0 U	1.0 U	4.0 U
Vinyl chloride	μg/L	1.0 U	0.31 J	1.0 U	4.0 U
Xylenes (total)	μg/L	2.0 U	2.0 U	2.0 U	8.0 U

Notes:

U - Not detected at the associated reporting limit

J - Estimated concentration

UJ - Not detected; associated reporting limit is estimated

TABLE 2 Page 9 of 12

GROUNDWATER SAMPLING ANALYTICAL RESULTS SPRING 2015 GROUNDWATER SAMPLING SOUTH DAYTON DUMP AND LANDFILL ILLINOIS TOOL WORKS, INC. MORAINE, OHIO MAY 2015

OU Aquifer Sample Location:		OU1 Upper Aquifer MW-229	OU2 Upper Aquifer MW-102	OU2 Upper Aquifer MW-102	OU2 Upper Aquifer MW-103
Sample ID: Date:		GW-38443-051415-AS-019 5/14/2015 Duplicate	GW-38443-051115-GL-002 5/11/2015	GW-38443-051115-GL-003 5/11/2015 Duplicate	GW-38443-051115-GL-004 5/11/2015
Sampling Company:		CRA	CRA	CRA	CRA
Parameters	Units				
Volatiles					
1,1,1-Trichloroethane	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	μg/L	2.5 U	1.0 U	1.0 U	0.48 J
1,1-Dichloroethene	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
1,2-Dibromo-3-chloropropane (DBCP)	μg/L	5.0 U	2.0 U	2.0 U	2.0 U
1,2-Dibromoethane (Ethylene dibromide)	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	25 U	10 U	10 U	10 U
2-Hexanone	μg/L	25 U	10 U	10 U	10 U
4-Methyl-2-pentanone (Methyl isobutyl ketone) (MIBK)	μg/L	25 U	10 U	10 U	10 U
Acetone	μg/L	25 UJ	10 U	10 U	10 U
Benzene	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
Bromoform	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
Bromomethane (Methyl bromide)	μg/L	2.5 U	1.0 UJ	1.0 UJ	1.0 UJ
Carbon disulfide	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
Chloroethane	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
Chloroform (Trichloromethane)	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
Chloromethane (Methyl chloride)	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	μg/L	8.7	1.0 U	1.0 U	0.38 J
cis-1,3-Dichloropropene	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
Cyclohexane	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane (CFC-12)	μg/L	2.5 U	1.0 U	1.0 U	1.0 U

TABLE 2 Page 10 of 12

GROUNDWATER SAMPLING ANALYTICAL RESULTS SPRING 2015 GROUNDWATER SAMPLING SOUTH DAYTON DUMP AND LANDFILL ILLINOIS TOOL WORKS, INC. MORAINE, OHIO MAY 2015

Sampling Company:	OU Aquifer Sample Location: Sample ID: Date:	OU1 Upper Aquifer MW-229 GW-38443-051415-AS-019 5/14/2015 Duplicate CRA	OU2 Upper Aquifer MW-102 GW-38443-051115-GL-002 5/11/2015 CRA	OU2 Upper Aquifer MW-102 GW-38443-051115-GL-003 5/11/2015 Duplicate CRA	OU2 Upper Aquifer MW-103 GW-38443-051115-GL-004 5/11/2015 CRA
Parameters	Units				
Ethylbenzene	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
Isopropyl benzene	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
Methyl acetate	μg/L	25 U	10 U	10 U	10 U
Methyl cyclohexane	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
Methyl tert butyl ether (MTBE)	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
Methylene chloride	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
Styrene	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	μg/L	2.5 U	1.0 U	0.31 J	1.0 U
Toluene	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
Trichloroethene	μg/L	73	1.8	1.9	0.54 J
Trichlorofluoromethane (CFC-11)	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
Trifluorotrichloroethane (Freon 113)	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
Vinyl chloride	μg/L	2.5 U	1.0 U	1.0 U	1.0 U
Xylenes (total)	μg/L	5.0 U	2.0 U	2.0 U	2.0 U

Notes:

U - Not detected at the associated reporting limit

J - Estimated concentration

UJ - Not detected; associated reporting limit is estimated

TABLE 2 Page 11 of 12

GROUNDWATER SAMPLING ANALYTICAL RESULTS SPRING 2015 GROUNDWATER SAMPLING SOUTH DAYTON DUMP AND LANDFILL ILLINOIS TOOL WORKS, INC. MORAINE, OHIO MAY 2015

Sample Lo	nple ID:	OU2 Upper Aquifer MW-201 GW-38443-051515-AS-024	OU2 (DP&L) Lower Aquifer MW-222 GW-38443-051215-GL-010	OU2 (DP&L) Upper Aquifer MW-222A GW-38443-051215-GL-009
	Date:	5/15/2015	5/12/2015	5/12/2015
Sampling Company:		CRA	CRA	CRA
Parameters	Units			
Volatiles				
1,1,1-Trichloroethane	μg/L	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	μg/L	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	μg/L	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	μg/L	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	μg/L	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	μg/L	1.0 U	1.0 U	1.0 U
1,2-Dibromo-3-chloropropane (DBCP)	μg/L	2.0 U	2.0 U	2.0 U
1,2-Dibromoethane (Ethylene dibromide)	μg/L	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	μg/L	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	μg/L	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	μg/L	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	μg/L	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	μg/L	1.0 U	1.0 U	1.0 U
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	10 U	10 U	10 U
2-Hexanone	μg/L	10 U	10 U	10 U
4-Methyl-2-pentanone (Methyl isobutyl ketone) (Methyl isobutyl ketone)		10 U	10 U	10 U
Acetone	μg/L	10 U	10 U	10 U
Benzene	μg/L	1.0 U	1.0 U	1.0 U
Bromodichloromethane	μg/L	1.0 U	1.0 U	1.0 U
Bromoform	μg/L	1.0 U	1.0 U	1.0 U
Bromomethane (Methyl bromide)	μg/L	1.0 U	1.0 UJ	1.0 UJ
Carbon disulfide	μg/L	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	μg/L	1.0 U	1.0 U	1.0 U
Chlorobenzene	μg/L	1.0 U	1.0 U	1.0 U
Chloroethane	μg/L	1.0 U	1.0 U	1.0 U
Chloroform (Trichloromethane)	μg/L	1.0 U	1.0 U	1.0 U
Chloromethane (Methyl chloride)	μg/L	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	μg/L	1.0 U	17	1.0 U
cis-1,3-Dichloropropene	μg/L	1.0 U	1.0 U	1.0 U
Cyclohexane	μg/L	1.0 U	1.0 U	1.0 U
Dibromochloromethane	μg/L	1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane (CFC-12)	μg/L	1.0 U	1.0 U	1.0 U

TABLE 2 Page 12 of 12

GROUNDWATER SAMPLING ANALYTICAL RESULTS SPRING 2015 GROUNDWATER SAMPLING SOUTH DAYTON DUMP AND LANDFILL ILLINOIS TOOL WORKS, INC. MORAINE, OHIO MAY 2015

	OU Aquifer Sample Location: Sample ID: Date:	OU2 Upper Aquifer MW-201 GW-38443-051515-AS-024 5/15/2015	OU2 (DP&L) Lower Aquifer MW-222 GW-38443-051215-GL-010 5/12/2015	OU2 (DP&L) Upper Aquifer MW-222A GW-38443-051215-GL-009 5/12/2015
Sampling Company:		CRA	CRA	CRA
Parameters	Units			
Ethylbenzene	μg/L	1.0 U	1.0 U	1.0 U
Isopropyl benzene	μg/L	1.0 U	1.0 U	1.0 U
Methyl acetate	μg/L	10 U	10 U	10 U
Methyl cyclohexane	μg/L	1.0 U	1.0 U	1.0 U
Methyl tert butyl ether (MTBE)	μg/L	1.0 U	1.0 U	1.0 U
Methylene chloride	μg/L	1.0 U	1.0 U	1.0 U
Styrene	μg/L	1.0 U	1.0 U	1.0 U
Tetrachloroethene	μg/L	0.45 J	1.0 U	1.0 U
Toluene	μg/L	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	μg/L	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	μg/L	1.0 U	1.0 U	1.0 U
Trichloroethene	μg/L	1.4	1.0 U	1.0 U
Trichlorofluoromethane (CFC-11)	μg/L	1.0 U	1.0 U	1.0 U
Trifluorotrichloroethane (Freon 113)	μg/L	1.0 U	1.0 U	1.0 U
Vinyl chloride	μg/L	1.0 U	5.6	1.0 U
Xylenes (total)	μg/L	2.0 U	2.0 U	2.0 U

Notes:

U - Not detected at the associated reporting limit

J - Estimated concentration

UJ - Not detected; associated reporting limit is estimated

SUMMARY OF ANALYTICAL METHODOLOGIES SPRING 2015 GROUNDWATER SAMPLING SOUTH DAYTON DUMP AND LANDFILL ILLINOIS TOOL WORKS, INC. MORAINE, OHIO **MAY 2015**

Parameter	Method
TCL VOCs	SW-846 8260 ¹

Notes:

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd

Edition, September 1986 (with all subsequent revisions) - Target Compound List

TCL

QUALIFIED SAMPLE RESULTS DUE TO HOLDING TIME EXCEEDANCE SPRING 2015 GROUNDWATER SAMPLING SOUTH DAYTON DUMP AND LANDFILL ILLINOIS TOOL WORKS, INC. MORAINE, OHIO MAY 2015

Parameter	Sample ID	Holding Time (days)	Holding Time Criteria (days)	Analyte	Qualified Sample Results	Units
VOCs	GW-38443-051315-AS-015	15	14	1,1-Dichloroethane	1.2 J	μg/L

Notes:

J - Estimated ConcentrationVOCs - Volatile Organic Compounds

QUALIFIED SAMPLE RESULTS DUE TO OUTLYING CONTINUING CALIBRATION RESULTS SPRING 2015 GROUNDWATER SAMPLING SOUTH DAYTON DUMP AND LANDFILL ILLINOIS TOOL WORKS, INC. MORAINE, OHIO MAY 2015

		Calibration		Associated	Qualified	
Parameter	Analyte	Date	%D	Sample ID	Result	Units
VOCs	Bromomethane	5/20/2015	27	GW-38443-051115-GL-001	1.0 UJ	μg/L
				GW-38443-051115-GL-002	1.0 UJ	μg/L
				GW-38443-051115-GL-003	1.0 UJ	μg/L
				GW-38443-051115-GL-004	1.0 UJ	μg/L
				GW-38443-051215-GL-006	1.0 UJ	μg/L
				GW-38443-051215-GL-007	1.0 UJ	μg/L
				GW-38443-051215-GL-008	1.0 UJ	μg/L
				GW-38443-051215-GL-009	1.0 UJ	μg/L
				GW-38443-051215-GL-010	1.0 UJ	μg/L
				GW-38443-051315-AS-014	1.0 UJ	μg/L
				GW-38443-051315-AS-016	1.0 UJ	μg/L
				GW-38443-051315-GL-011	1.0 UJ	μg/L
				GW-38443-051315-GL-012	1.0 UJ	μg/L
				GW-38443-051315-GL-013	1.0 UJ	μg/L
				GW-38443-051415-AS-018	4.0 UJ	μg/L
VOCs	Acetone	5/21/2015	50	GW-38443-051315-AS-015	17 UJ	μg/L
				GW-38443-051415-AS-019	25 UJ	μg/L
				GW-38443-051415-AS-020	170 UJ	μg/L

Notes:

%D - Percent difference

UJ - Not detected; associated reporting limit is estimated

QUALIFIED SAMPLE RESULTS DUE TO ANALYTE CONCENTRATIONS IN THE METHOD BLANKS SPRING 2015 GROUNDWATER SAMPLING SOUTH DAYTON DUMP AND LANDFILL ILLINOIS TOOL WORKS, INC. MORAINE, OHIO MAY 2015

Parameter	Analyte	Analysis Date	Blank Result *	Sample ID	Original Result	Qualified Result	Units
VOCs	Methylene chloride	05/20/2015	1.92 J	GW-38443-051415-AS-018	1.6 J	4.0 U	μg/L
VOCs	Methylene chloride	05/21/2015	0.81 J	GW-38443-051315-AS-015	0.64 J	1.7 U	μg/L
VOCs	Methylene chloride	05/21/2015	1.21 J	GW-38443-051415-AS-019	1.2 J	2.5 U	μg/L
VOCs	Methylene chloride	05/21/2015	8.1 J	GW-38443-051415-AS-020	9.3 J	17 U	μg/L

Notes:

* - Blank result adjusted for sample factors where applicable

J - Estimated Concentration

U - Not detected at the associated reporting limit

QUALIFIED SAMPLE DATA DUE TO ANALYTE CONCENTRATIONS IN THE RINSE BLANKS SPRING 2015 GROUNDWATER SAMPLING SOUTH DAYTON DUMP AND LANDFILL ILLINOIS TOOL WORKS, INC. MORAINE, OHIO MAY 2015

Parameter	Rinse Blank ID	Blank Date	Analyte	Blank Result	Associated Sample ID	Original Result	Qualified Result	Units
VOCs	GW-38443-051315-AS-017	05/13/15	Chloroform	0.30 J	GW-38443-051215-GL-009	0.52 J	1.0 U	μg/L

Notes:

J - Estimated Concentration

U - Not detected at the associated reporting limit

Memorandum

To: Julian Hayward Ref. No.: 038443 From: Angela Bown/cs/24-NF Date: July 21, 2015 CC: Valerie Chan Re: **Analytical Results and Full Validation** Spring 2015 Groundwater Sampling South Dayton Dump and Landfill **Illinois Tool Works** Moraine. Ohio June 2015

1. Introduction

This document details a validation of analytical results for water samples collected in support of the Spring 2015 Groundwater Sampling at the South Dayton Dump and Landfill site during June 2015. Samples were submitted to TestAmerica Laboratories, Inc (TestAmerica) located in North Canton, Ohio. A sample collection and analysis summary is presented in Table 1. The validated analytical results are summarized in Table 2. A summary of the analytical methodology is presented in Table 3.

Full Contract Laboratory Program (CLP) equivalent raw data deliverables were provided by the laboratory. Evaluation of the data was based on information obtained from the finished data sheets, raw data, chain of custody form, calibration data, blank data, recovery data from surrogate spikes/laboratory control samples (LCS)/matrix spike (MS) samples. The assessment of analytical and in-house data included checks for: data consistency (by observing comparability of duplicate analyses), adherence to accuracy and precision criteria, and transmittal errors.

The QA/QC criteria by which these data have been assessed are outlined in the analytical methods referenced in Table 3 and applicable guidance from the documents entitled:

- i) "Quality Assurance Project Plan (QAPP)", Revision 01, November 2014
- ii) "USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review", USEPA 540-R-08-01, June 2008

Item ii) will subsequently be referred to as the "Guidelines" in this Memorandum.

2. Sample Holding Time and Preservation

The sample holding time criteria for the analyses are summarized in Table 3. Sample chain of custody documents and analytical reports were used to determine sample holding times. All samples were analyzed within the required holding times.

All samples were properly preserved, delivered on ice, and stored by the laboratory at the required temperature (0-6°C).

 Gas Chromatography/Mass Spectrometer (GC/MS) – Tuning and Mass Calibration (Instrument Performance Check)

3.1 Organic Analyses

Prior to volatile organic compound (VOC) analysis, GC/MS instrumentation is tuned to ensure optimization over the mass range of interest. To evaluate instrument tuning, the method requires the analysis of specific tuning compound bromofluorobenzene (BFB). The resulting spectra must meet the criteria cited in the method before analysis is initiated. Analysis of the tuning compound must then be repeated every 12 hours throughout sample analysis to ensure the continued optimization of the instrument.

The tuning compound was analyzed at the required frequency throughout VOC analysis periods. All tuning criteria were met indicating that proper optimization of the instrumentation was achieved.

4. Initial Calibration - Organic Analyses

4.1 GC/MS

To quantify VOCs of interest in samples, calibration of the GC/MS over a specific concentration range must be performed. Initially, a five-point calibration curve containing all compounds of interest is analyzed to characterize instrument response for each analyte over a specific concentration range. Linearity of the calibration curve and instrument sensitivity are evaluated against the following criteria:

- i) All relative response factors (RRFs) must be greater than or equal to 0.050 (greater than or equal to 0.010 for compounds that exhibit poor response)
- ii) The percent relative standard deviation (%RSD) values must not exceed 20.0 percent (40.0 percent for compounds that exhibit poor response) or a minimum correlation coefficient (R) and minimum coefficient of determination (R²) of 0.99 if linear and quadratic equation calibration curves are used

The initial calibration data for VOCs were reviewed. All compounds met the above criteria for sensitivity and linearity.

5. Continuing Calibration - Organic Analyses

5.1 GC/MS

To ensure that instrument calibration for VOC analyses is acceptable throughout the sample analysis period, continuing calibration standards must be analyzed and compared to the initial calibration curve every 12 hours.

The following criteria were employed to evaluate continuing calibration data:

- i) All RRF values must be greater than or equal to 0.050 (greater than or equal to 0.010 for compounds that exhibit poor response)
- ii) Percent difference (%D) values must not exceed 25.0 percent (40.0 percent for compounds that exhibit poor response)

Calibration standards were analyzed at the required frequency, and the results met the above criteria for instrument sensitivity and stability with the exception of Bromomethane. Table 4 presents the sample results that were qualified due to outlying continuing calibration results.

6. Laboratory Blank Analyses

Method blanks are prepared from a purified matrix and analyzed with investigative samples to determine the existence and magnitude of sample contamination introduced during the analytical procedures.

For this study, laboratory method blanks were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

6.1 Organic Analyses

All method blank results were non-detect, indicating that laboratory contamination was not a factor for this investigation.

7. Surrogate Spike Recoveries

In accordance with the methods employed, all samples, blanks, and QC samples analyzed for organics are spiked with surrogate compounds prior to sample analysis. Surrogate recoveries provide a means to evaluate the effects of laboratory performance on individual sample matrices.

All samples submitted for VOC determinations were spiked with the appropriate number of surrogate compounds prior to sample analysis.

Surrogate recoveries were assessed against laboratory control limits. All surrogate recoveries met the laboratory criteria.

8. Internal Standards (IS) Analyses

IS data were evaluated for all VOC sample analyses.

8.1 Organics Analyses

To ensure that changes in the GC/MS sensitivity and response do not affect sample analysis results IS compounds are added to each sample prior to analysis. All results are then calculated as a ratio of the IS responses.

The sample IS results were evaluated against the following criteria:

- i) The retention time of the IS must not vary more than ±30 seconds from the associated calibration standard
- ii) IS area counts must not vary by more than a factor of two (-50 percent to +100 percent) from the associated calibration standard

All organic IS recoveries and retention times met the above criteria.

9. Laboratory Control Sample Analyses

LCS are prepared and analyzed as samples to assess the analytical efficiencies of the methods employed, independent of sample matrix effects.

For this study, LCS were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

9.1 Organic Analyses

The LCS contained all compounds of interest. All LCS recoveries were within the laboratory control limits, demonstrating acceptable analytical accuracy.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

To evaluate the effects of sample matrices on the distillation process, measurement procedures, and accuracy of a particular analysis, samples are spiked with a known concentration of the analyte of concern and analyzed as MS/MSD samples. The RPD between the MS and MSD is used to assess analytical precision.

MS/MSD analyses were performed as specified in Table 1.

10.1 Organic Analyses

The MS/MSD samples were spiked with all compounds of interest. All percent recoveries and RPD values were within the laboratory control limits, demonstrating acceptable analytical accuracy and precision.

11. Field QA/QC Samples

The field QA/QC consisted of one (1) trip blank sample and one (1) field duplicate sample set.

11.1 Trip Blank Sample Analysis

To evaluate contamination from sample collection, transportation, storage, and analytical activities, one trip blank was submitted to the laboratory for VOC analysis. All results were non-detect for the compounds of interest.

11.2 Field Duplicate Sample Analysis

To assess the analytical and sampling protocol precision, one field duplicate sample set was collected and submitted "blind" to the laboratory, as specified in Table 1. The RPDs associated with these duplicate samples must be less than 50 percent for water samples. If the reported concentration in either the investigative sample or its duplicate is less than five times the reporting limit (RL), the evaluation criterion is one times the RL value for water samples.

All field duplicate results were within acceptable agreement, demonstrating acceptable sampling and analytical precision.

Analyte Reporting

The laboratory reported detected results down to the laboratory's method detection limit (MDL) for each analyte. Positive analyte detections less than the PQL but greater than the MDL were qualified as estimated (J) in Table 2 unless qualified otherwise in this memorandum. Non-detect results were presented as non-detect at the RL in Table 2.

13. Target Compound Identification

To minimize erroneous compound identification during organic analyses, qualitative criteria including compound retention time and mass spectra were evaluated according to the identification criteria established by the methods. The samples identified in Table 1 were reviewed. The organic compounds reported adhered to the specified identification criteria.

14. Conclusion

Based on the assessment detailed in the foregoing, the data summarized in Table 2 are acceptable with the specific qualifications noted herein.

Table 1

Sample Collection and Analysis Summary Spring 2015 Groundwater Sampling South Dayton Dump and Landfill Illinois Tool Works, Inc. Moraine, Ohio June 2015

					Analysis/Parameter	<u>s</u>
Sample Identification	Location	Matrix	Collection Date (mm/dd/yyyy)	Collection Time (hr:min)	TCL VOCs	Comments
TestAmerica Job Number: 240-52473-1						
GW-38443-062315-JC-025	MW-B	WG	06/23/2015	13:00	X	
GW-38443-062315-JC-026	MW-A	WG	06/23/2015	15:15	X	
GW-38443-062315-JC-027	MW-220	WG	06/23/2015	17:10	X	
GW-38443-062415-JC-028	MW-221	WG	06/24/2015	10:45	X	MS/MSD
GW-38443-062415-JC-029	GW-5	WG	06/24/2015	12:05	Χ	
GW-38443-062415-JC-030	GW-5	WG	06/24/2015	12:15	Χ	FD(GW-38443-062415-JC-029)
TRIP BLANK 001	Trip Blank	WGQ	06/24/2015	-	Χ	

Notes:

FD - Field Duplicate sample of sample in parenthesis

MS/MSD - Matrix Spike/Matrix Spike Duplicate

TCL - Target Compound List VOCs - Volatile Organic Compounds

WG - Groundwater

WGQ - Groundwater Quality Control Sample

Table 2 Page 1 of 4

Analytical Results Summary Spring 2015 Groundwater Sampling South Dayton Dump and Landfill Illinois Tool Works Moraine, Ohio June 2015

Sample Location: MW-220 MW-B MW-A

Sample ID: GW-38443-062315-JC-027 GW-38443-062315-JC-026 GW-38443-062315-JC-025

6/22/2015 6/22/2015 6/22/2015

Sample date	e:	6/23/2015	6/23/2015	6/23/2015
Parameters	Units			
Volatile Organic Compounds				
1,1,1-Trichloroethane	μg/L	1.4 U	3.3 U	33 U
1,1,2,2-Tetrachloroethane	μg/L	1.4 U	3.3 U	33 U
1,1,2-Trichloroethane	μg/L	1.4 U	3.3 U	33 U
1,1-Dichloroethane	μg/L	1.4 U	3.3 U	33 U
1,1-Dichloroethene	μg/L	1.4 U	3.3 U	33 U
1,2,4-Trichlorobenzene	μg/L	1.4 U	3.3 U	33 U
1,2-Dibromo-3-chloropropane (DBCP)	μg/L	2.9 U	6.7 U	67 U
1,2-Dibromoethane (Ethylene dibromide)	μg/L	1.4 U	3.3 U	33 U
1,2-Dichlorobenzene	μg/L	1.4 U	3.3 U	33 U
1,2-Dichloroethane	μg/L	1.4 U	3.3 U	33 U
1,2-Dichloropropane	μg/L	1.4 U	3.3 U	33 U
1,3-Dichlorobenzene	μg/L	1.4 U	3.3 U	33 U
1,4-Dichlorobenzene	μg/L	1.4 U	3.3 U	33 U
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	14 U	9.9 J	330 U
2-Hexanone	μg/L	14 U	33 U	330 U
4-Methyl-2-pentanone (Methyl isobutyl ketone) (MIBK)	μg/L	14 U	33 U	330 U
Acetone	μg/L	14 U	53	34 J
Benzene	μg/L	38	80	250
Bromodichloromethane	μg/L	1.4 U	3.3 U	33 U
Bromoform	μg/L	1.4 U	3.3 U	33 U
Bromomethane (Methyl bromide)	μg/L	1.4 UJ	3.3 UJ	33 UJ
Carbon disulfide	μg/L	1.4 U	3.3 U	33 U
Carbon tetrachloride	μg/L	1.4 U	3.3 U	33 U
Chlorobenzene	μg/L	1.4 U	3.3 U	33 U
Chloroethane	μg/L	1.4 U	3.3 U	33 U
Chloroform (Trichloromethane)	μg/L	1.4 U	3.3 U	33 U
Chloromethane (Methyl chloride)	μg/L	1.4 U	3.3 U	33 U
cis-1,2-Dichloroethene	μg/L	40	3.3 U	33 U
cis-1,3-Dichloropropene	μg/L	1.4 U	3.3 U	33 U
Cyclohexane	μg/L	1.4 U	67	200
Dibromochloromethane	μg/L	1.4 U	3.3 U	33 U

Table 2 Page 2 of 4

Analytical Results Summary Spring 2015 Groundwater Sampling South Dayton Dump and Landfill Illinois Tool Works Moraine, Ohio June 2015

	Sample Location: Sample ID: Sample date:	MW-220 GW-38443-062315-JC-027 6/23/2015	MW-A GW-38443-062315-JC-026 6/23/2015	MW-B GW-38443-062315-JC-025 6/23/2015
Parameters	Units			
Dichlorodifluoromethane (CFC-12)	μg/L	1.4 U	3.3 U	33 U
Ethylbenzene	μg/L	1.4 U	8.2	600
Isopropyl benzene	μg/L	1.4 U	21	38
Methyl acetate	μg/L	14 U	33 U	330 U
Methyl cyclohexane	μg/L	1.4 U	40	87
Methyl tert butyl ether (MTBE)	μg/L	1.4 U	3.3 U	33 U
Methylene chloride	μg/L	1.4 U	3.3 U	33 U
Styrene	μg/L	1.4 U	3.3 U	33 U
Tetrachloroethene	μg/L	1.4 U	3.3 U	33 U
Toluene	μg/L	1.4 U	2.8 J	64
trans-1,2-Dichloroethene	μg/L	1.4 U	3.3 U	33 U
trans-1,3-Dichloropropene	μg/L	1.4 U	3.3 U	33 U
Trichloroethene	μg/L	1.4 U	3.3 U	33 U
Trichlorofluoromethane (CFC-11)	μg/L	1.4 U	3.3 U	33 U
Trifluorotrichloroethane (Freon 113)	μg/L	1.4 U	3.3 U	33 U
Vinyl chloride	μg/L	33	3.3 U	33 U
Xylenes (total)	μg/L	2.9 U	3.9 J	1100

Notes:

U - Not detected at the associated reporting limit

J - Estimated concentration

UJ - Not detected; associated reporting limit is estimated

Table 2 Page 3 of 4

Analytical Results Summary Spring 2015 Groundwater Sampling South Dayton Dump and Landfill Illinois Tool Works Moraine, Ohio June 2015

Sample Location: GW-5 GW-5 MW-221

Sample ID: GW-38443-062415-JC-029 GW-38443-062415-JC-030 GW-38443-062415-JC-028

Sample date: 6/24/2015 6/24/2015 6/24/2015

Sample date:		6/24/2015	6/24/2015 Duplicate	6/24/2015	
Parameters	Units		·		
Volatile Organic Compounds					
1,1,1-Trichloroethane	μg/L	1.0 U	1.3 U	10 U	
1,1,2,2-Tetrachloroethane	μg/L	1.0 U	1.3 U	10 U	
1,1,2-Trichloroethane	μg/L	1.0 U	1.3 U	10 U	
1,1-Dichloroethane	μg/L	1.0 U	1.3 U	10 U	
1,1-Dichloroethene	μg/L	1.0 U	1.3 U	10 U	
1,2,4-Trichlorobenzene	μg/L	1.0 U	1.3 U	10 U	
1,2-Dibromo-3-chloropropane (DBCP)	μg/L	2.0 U	2.5 U	20 U	
1,2-Dibromoethane (Ethylene dibromide)	μg/L	1.0 U	1.3 U	10 U	
1,2-Dichlorobenzene	μg/L	1.0 U	1.3 U	10 U	
1,2-Dichloroethane	μg/L	1.0 U	1.3 U	10 U	
1,2-Dichloropropane	μg/L	1.0 U	1.3 U	10 U	
1,3-Dichlorobenzene	μg/L	1.0 U	1.3 U	10 U	
1,4-Dichlorobenzene	μg/L	1.0 U	1.3 U	10 U	
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	10 U	13 U	100 U	
2-Hexanone	μg/L	10 U	13 U	100 U	
4-Methyl-2-pentanone (Methyl isobutyl ketone) (MIBK		10 U	13 U	100 U	
Acetone	μg/L	10 U	13 U	100 U	
Benzene	μg/L	35	35	10 U	
Bromodichloromethane	μg/L	1.0 U	1.3 U	10 U	
Bromoform	μg/L	1.0 U	1.3 U	10 U	
Bromomethane (Methyl bromide)	μg/L	1.0 UJ	1.3 UJ	10 UJ	
Carbon disulfide	μg/L	1.0 U	1.3 U	10 U	
Carbon tetrachloride	μg/L	1.0 U	1.3 U	10 U	
Chlorobenzene	μg/L	1.0 U	1.3 U	10 U	
Chloroethane	μg/L	1.0 U	1.3 U	10 U	
Chloroform (Trichloromethane)	μg/L	1.0 U	1.3 U	10 U	
Chloromethane (Methyl chloride)	μg/L	1.0 U	1.3 U	10 U	
cis-1,2-Dichloroethene	μg/L	1.0 U	1.3 U	290	
cis-1,3-Dichloropropene	μg/L	1.0 U	1.3 U	10 U	
Cyclohexane	μg/L	14	11	10 U	
Dibromochloromethane	μg/L	1.0 U	1.3 U	10 U	

Table 2 Page 4 of 4

Analytical Results Summary Spring 2015 Groundwater Sampling South Dayton Dump and Landfill Illinois Tool Works Moraine, Ohio June 2015

	Sample Location: Sample ID: Sample date:	GW-5 GW-38443-062415-JC-029 6/24/2015	GW-5 GW-38443-062415-JC-030 6/24/2015 Duplicate	MW-221 GW-38443-062415-JC-028 6/24/2015
Parameters	Units			
Dichlorodifluoromethane (CFC-12)	μg/L	1.0 U	1.3 U	10 U
Ethylbenzene	μg/L	1.0 U	1.3 U	10 U
Isopropyl benzene	μg/L	0.75 J	0.68 J	10 U
Methyl acetate	μg/L	10 U	13 U	100 U
Methyl cyclohexane	μg/L	4.6	3.5	10 U
Methyl tert butyl ether (MTBE)	μg/L	1.0 U	1.3 U	10 U
Methylene chloride	μg/L	1.0 U	1.3 U	10 U
Styrene	μg/L	1.0 U	1.3 U	10 U
Tetrachloroethene	μg/L	1.0 U	1.3 U	10 U
Toluene	μg/L	0.25 J	1.3 U	10 U
trans-1,2-Dichloroethene	μg/L	1.0 U	1.3 U	10 U
trans-1,3-Dichloropropene	μg/L	1.0 U	1.3 U	10 U
Trichloroethene	μg/L	1.0 U	1.3 U	10 U
Trichlorofluoromethane (CFC-11)	μg/L	1.0 U	1.3 U	10 U
Trifluorotrichloroethane (Freon 113)	μg/L	1.0 U	1.3 U	10 U
Vinyl chloride	μg/L	1.0 U	1.3 U	110
Xylenes (total)	μg/L	0.56 J	2.5 U	20 U

Notes:

U - Not detected at the associated reporting limit

J - Estimated concentration

UJ - Not detected; associated reporting limit is estimated

Table 3

Analytical Methods Spring 2015 Groundwater Sampling South Dayton Dump and Landfill Illinois Tool Works, Inc. Moraine, Ohio June 2015

			Holding Time		
Parameter	Method	Matrix	Collection to Extraction (Days)	Collection or Extraction to Analysis (Days)	
TCL VOCs	SW-846 8260B	Water	-	14	

Notes:

SW-846 - "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition, 1986, with subsequent revisions

TCL - Target Compound List

Table 4

Qualified Sample Results Due to Outlying Continuing Calibration Results Spring 2015 Groundwater Sampling South Dayton Dump and Landfill Illinois Tool Works, Inc. Moraine, Ohio June 2015

Parameter	Analyte	Calibration Date	%D	Associated Sample ID	Qualified Result	Units
VOCs	Bromomethane	7/2/2015	25.4	GW-38443-062315-JC-025 GW-38443-062315-JC-026 GW-38443-062315-JC-027 GW-38443-062415-JC-028 GW-38443-062415-JC-029	33 UJ 3.3 UJ 1.4 UJ 10 UJ 1.0 UJ	μg/L μg/L μg/L μg/L μg/L
VOCs	Bromomethane	7/6/2015	28.2	GW-38443-062415-JC-030	1.3 UJ	μg/L

Notes:

-- - Not applicable%D - Percent difference

UJ - Not detected; associated reporting limit is estimated